Qingzhou Shi, Kai Zheng, Haoyuan Li, Bo Wang, Xiao Liang, Xinyu Li, Jianxin Wang
{"title":"LKLPDA:用于预测 piRNA 与疾病关联的低链快速核学习方法","authors":"Qingzhou Shi, Kai Zheng, Haoyuan Li, Bo Wang, Xiao Liang, Xinyu Li, Jianxin Wang","doi":"10.1109/TCBB.2024.3452055","DOIUrl":null,"url":null,"abstract":"<p><p>Piwi-interacting RNAs (piRNAs) are increasingly recognized as potential biomarkers for various diseases. Investig-ating the complex relationship between piRNAs and diseases through computational methods can reduce the costs and risks associated with biological experiments. Fast kernel learning (FKL) is a classical method for multi-source data fusion that is widely employed in association prediction research. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper the effectiveness of the network-based ideal kernel. The conventional FKL method does not address this issue. In this study, we propose a low-rank fast kernel learning (LRFKL) algorithm, which consists of low-rank representation (LRR) and the FKL algorithm. The LRFKL algorithm is designed to mitigate the effects of noise on the network-based ideal kernel. Using LRFKL, we propose a novel approach for predicting piRNA-disease associations called LKLPDA. Specifically, we first compute the similarity matrices for piRNAs and diseases. Then we use the LRFKL to fuse the similarity matrices for piRNAs and diseases separately. Finally, the LKLPDA employs AutoGluon-Tabular for predictive analysis. Computational results show that LKLPDA effectively predicts piRNA-disease associations with higher accuracy compared to previous methods. In addition, case studies confirm the reliability of the model in predicting piRNA-disease associations. Availability and implementation: The LKLPDA software and data are freely available at https://github.com/Shiqzz/LKLPDA-master.git.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LKLPDA: A Low-Rank Fast Kernel Learning Approach for Predicting piRNA-Disease Associations.\",\"authors\":\"Qingzhou Shi, Kai Zheng, Haoyuan Li, Bo Wang, Xiao Liang, Xinyu Li, Jianxin Wang\",\"doi\":\"10.1109/TCBB.2024.3452055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piwi-interacting RNAs (piRNAs) are increasingly recognized as potential biomarkers for various diseases. Investig-ating the complex relationship between piRNAs and diseases through computational methods can reduce the costs and risks associated with biological experiments. Fast kernel learning (FKL) is a classical method for multi-source data fusion that is widely employed in association prediction research. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper the effectiveness of the network-based ideal kernel. The conventional FKL method does not address this issue. In this study, we propose a low-rank fast kernel learning (LRFKL) algorithm, which consists of low-rank representation (LRR) and the FKL algorithm. The LRFKL algorithm is designed to mitigate the effects of noise on the network-based ideal kernel. Using LRFKL, we propose a novel approach for predicting piRNA-disease associations called LKLPDA. Specifically, we first compute the similarity matrices for piRNAs and diseases. Then we use the LRFKL to fuse the similarity matrices for piRNAs and diseases separately. Finally, the LKLPDA employs AutoGluon-Tabular for predictive analysis. Computational results show that LKLPDA effectively predicts piRNA-disease associations with higher accuracy compared to previous methods. In addition, case studies confirm the reliability of the model in predicting piRNA-disease associations. Availability and implementation: The LKLPDA software and data are freely available at https://github.com/Shiqzz/LKLPDA-master.git.</p>\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TCBB.2024.3452055\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3452055","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
LKLPDA: A Low-Rank Fast Kernel Learning Approach for Predicting piRNA-Disease Associations.
Piwi-interacting RNAs (piRNAs) are increasingly recognized as potential biomarkers for various diseases. Investig-ating the complex relationship between piRNAs and diseases through computational methods can reduce the costs and risks associated with biological experiments. Fast kernel learning (FKL) is a classical method for multi-source data fusion that is widely employed in association prediction research. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper the effectiveness of the network-based ideal kernel. The conventional FKL method does not address this issue. In this study, we propose a low-rank fast kernel learning (LRFKL) algorithm, which consists of low-rank representation (LRR) and the FKL algorithm. The LRFKL algorithm is designed to mitigate the effects of noise on the network-based ideal kernel. Using LRFKL, we propose a novel approach for predicting piRNA-disease associations called LKLPDA. Specifically, we first compute the similarity matrices for piRNAs and diseases. Then we use the LRFKL to fuse the similarity matrices for piRNAs and diseases separately. Finally, the LKLPDA employs AutoGluon-Tabular for predictive analysis. Computational results show that LKLPDA effectively predicts piRNA-disease associations with higher accuracy compared to previous methods. In addition, case studies confirm the reliability of the model in predicting piRNA-disease associations. Availability and implementation: The LKLPDA software and data are freely available at https://github.com/Shiqzz/LKLPDA-master.git.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system