Louis Bliard, Jordan S Martin, Maria Paniw, Daniel T Blumstein, Julien G A Martin, Josephine M Pemberton, Daniel H Nussey, Dylan Z Childs, Arpat Ozgul
{"title":"检测生活史权衡表达中的环境依赖性。","authors":"Louis Bliard, Jordan S Martin, Maria Paniw, Daniel T Blumstein, Julien G A Martin, Josephine M Pemberton, Daniel H Nussey, Dylan Z Childs, Arpat Ozgul","doi":"10.1111/1365-2656.14173","DOIUrl":null,"url":null,"abstract":"<p><p>Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.</p>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting context dependence in the expression of life history trade-offs.\",\"authors\":\"Louis Bliard, Jordan S Martin, Maria Paniw, Daniel T Blumstein, Julien G A Martin, Josephine M Pemberton, Daniel H Nussey, Dylan Z Childs, Arpat Ozgul\",\"doi\":\"10.1111/1365-2656.14173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.</p>\",\"PeriodicalId\":14934,\"journal\":{\"name\":\"Journal of Animal Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/1365-2656.14173\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2656.14173","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Detecting context dependence in the expression of life history trade-offs.
Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.
期刊介绍:
Journal of Animal Ecology publishes the best original research on all aspects of animal ecology, ranging from the molecular to the ecosystem level. These may be field, laboratory and theoretical studies utilising terrestrial, freshwater or marine systems.