Yazdan Al-Kurdi, Cem Direkoǧlu, Meryem Erbilek, Dizem Arifler
{"title":"基于卷积神经网络的回归分析,从二维光学散射信号预测核下染色质组织。","authors":"Yazdan Al-Kurdi, Cem Direkoǧlu, Meryem Erbilek, Dizem Arifler","doi":"10.1117/1.JBO.29.8.080502","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Azimuth-resolved optical scattering signals obtained from cell nuclei are sensitive to changes in their internal refractive index profile. These two-dimensional signals can therefore offer significant insights into chromatin organization.</p><p><strong>Aim: </strong>We aim to determine whether two-dimensional scattering signals can be used in an inverse scheme to extract the spatial correlation length <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> and extent <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> of subnuclear refractive index fluctuations to provide quantitative information on chromatin distribution.</p><p><strong>Approach: </strong>Since an analytical formulation that links azimuth-resolved signals to <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> and <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> is not feasible, we set out to assess the potential of machine learning to predict these parameters via a data-driven approach. We carry out a convolutional neural network (CNN)-based regression analysis on 198 numerically computed signals for nuclear models constructed with <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> varying in steps of <math><mrow><mn>0.1</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> between 0.4 and <math><mrow><mn>1.0</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , and <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> varying in steps of 0.005 between 0.005 and 0.035. We quantify the performance of our analysis using a five-fold cross-validation technique.</p><p><strong>Results: </strong>The results show agreement between the true and predicted values for both <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> and <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> , with mean absolute percent errors of 8.5% and 13.5%, respectively. These errors are smaller than the minimum percent increment between successive values for respective parameters characterizing the constructed models and thus signify an extremely good prediction performance over the range of interest.</p><p><strong>Conclusions: </strong>Our results reveal that CNN-based regression can be a powerful approach for exploiting the information content of two-dimensional optical scattering signals and hence monitoring chromatin organization in a quantitative manner.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 8","pages":"080502"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350520/pdf/","citationCount":"0","resultStr":"{\"title\":\"Convolutional neural network-based regression analysis to predict subnuclear chromatin organization from two-dimensional optical scattering signals.\",\"authors\":\"Yazdan Al-Kurdi, Cem Direkoǧlu, Meryem Erbilek, Dizem Arifler\",\"doi\":\"10.1117/1.JBO.29.8.080502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Azimuth-resolved optical scattering signals obtained from cell nuclei are sensitive to changes in their internal refractive index profile. These two-dimensional signals can therefore offer significant insights into chromatin organization.</p><p><strong>Aim: </strong>We aim to determine whether two-dimensional scattering signals can be used in an inverse scheme to extract the spatial correlation length <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> and extent <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> of subnuclear refractive index fluctuations to provide quantitative information on chromatin distribution.</p><p><strong>Approach: </strong>Since an analytical formulation that links azimuth-resolved signals to <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> and <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> is not feasible, we set out to assess the potential of machine learning to predict these parameters via a data-driven approach. We carry out a convolutional neural network (CNN)-based regression analysis on 198 numerically computed signals for nuclear models constructed with <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> varying in steps of <math><mrow><mn>0.1</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> between 0.4 and <math><mrow><mn>1.0</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , and <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> varying in steps of 0.005 between 0.005 and 0.035. We quantify the performance of our analysis using a five-fold cross-validation technique.</p><p><strong>Results: </strong>The results show agreement between the true and predicted values for both <math> <mrow><msub><mi>ℓ</mi> <mi>c</mi></msub> </mrow> </math> and <math><mrow><mi>δ</mi> <mi>n</mi></mrow> </math> , with mean absolute percent errors of 8.5% and 13.5%, respectively. These errors are smaller than the minimum percent increment between successive values for respective parameters characterizing the constructed models and thus signify an extremely good prediction performance over the range of interest.</p><p><strong>Conclusions: </strong>Our results reveal that CNN-based regression can be a powerful approach for exploiting the information content of two-dimensional optical scattering signals and hence monitoring chromatin organization in a quantitative manner.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 8\",\"pages\":\"080502\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.8.080502\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.8.080502","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
意义重大:从细胞核中获得的方位分辨光学散射信号对其内部折射率曲线的变化非常敏感。目的:我们旨在确定二维散射信号是否可用于反向方案,以提取核下折射率波动的空间相关长度ℓ c和范围δ n,从而提供染色质分布的定量信息:由于将方位分辨信号与 ℓ c 和 δ n 联系起来的分析表述不可行,我们开始评估机器学习通过数据驱动方法预测这些参数的潜力。我们对 198 个核模型的数值计算信号进行了基于卷积神经网络(CNN)的回归分析,这些模型的ℓ c 在 0.4 和 1.0 μ m 之间以 0.1 μ m 为单位变化,δ n 在 0.005 和 0.035 之间以 0.005 为单位变化。我们使用五倍交叉验证技术对分析结果进行量化:结果显示,ℓ c 和 δ n 的真实值与预测值一致,平均绝对百分误差分别为 8.5% 和 13.5%。这些误差小于所构建模型的各参数值之间的最小百分比增量,因此在所关注的范围内具有极佳的预测性能:我们的研究结果表明,基于 CNN 的回归可以成为利用二维光学散射信号的信息含量,从而定量监测染色质组织的有力方法。
Convolutional neural network-based regression analysis to predict subnuclear chromatin organization from two-dimensional optical scattering signals.
Significance: Azimuth-resolved optical scattering signals obtained from cell nuclei are sensitive to changes in their internal refractive index profile. These two-dimensional signals can therefore offer significant insights into chromatin organization.
Aim: We aim to determine whether two-dimensional scattering signals can be used in an inverse scheme to extract the spatial correlation length and extent of subnuclear refractive index fluctuations to provide quantitative information on chromatin distribution.
Approach: Since an analytical formulation that links azimuth-resolved signals to and is not feasible, we set out to assess the potential of machine learning to predict these parameters via a data-driven approach. We carry out a convolutional neural network (CNN)-based regression analysis on 198 numerically computed signals for nuclear models constructed with varying in steps of between 0.4 and , and varying in steps of 0.005 between 0.005 and 0.035. We quantify the performance of our analysis using a five-fold cross-validation technique.
Results: The results show agreement between the true and predicted values for both and , with mean absolute percent errors of 8.5% and 13.5%, respectively. These errors are smaller than the minimum percent increment between successive values for respective parameters characterizing the constructed models and thus signify an extremely good prediction performance over the range of interest.
Conclusions: Our results reveal that CNN-based regression can be a powerful approach for exploiting the information content of two-dimensional optical scattering signals and hence monitoring chromatin organization in a quantitative manner.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.