{"title":"cBAF、pBAF 和 gBAF 复合物对多聚酶相关组蛋白标记的不同调节。","authors":"Mary Bergwell, JinYoung Park, Jacob G Kirkland","doi":"10.26508/lsa.202402715","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin regulators alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein's access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes are a group of ATPase-dependent chromatin remodelers. In mouse embryonic stem cells, there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF). <i>Nkx2-9</i> is bivalent, meaning nucleosomes at the locus have active and repressive modifications. In this study, we used unique BAF subunits to recruit each of the three complexes to <i>Nkx2-9</i> using dCas9-mediated inducible recruitment (FIRE-Cas9). We show that recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 histone mark and polycomb repressive-1 and repressive-2 complex proteins, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 11","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361369/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential modulation of polycomb-associated histone marks by cBAF, pBAF, and gBAF complexes.\",\"authors\":\"Mary Bergwell, JinYoung Park, Jacob G Kirkland\",\"doi\":\"10.26508/lsa.202402715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromatin regulators alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein's access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes are a group of ATPase-dependent chromatin remodelers. In mouse embryonic stem cells, there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF). <i>Nkx2-9</i> is bivalent, meaning nucleosomes at the locus have active and repressive modifications. In this study, we used unique BAF subunits to recruit each of the three complexes to <i>Nkx2-9</i> using dCas9-mediated inducible recruitment (FIRE-Cas9). We show that recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 histone mark and polycomb repressive-1 and repressive-2 complex proteins, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361369/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202402715\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402715","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Differential modulation of polycomb-associated histone marks by cBAF, pBAF, and gBAF complexes.
Chromatin regulators alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein's access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes are a group of ATPase-dependent chromatin remodelers. In mouse embryonic stem cells, there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF). Nkx2-9 is bivalent, meaning nucleosomes at the locus have active and repressive modifications. In this study, we used unique BAF subunits to recruit each of the three complexes to Nkx2-9 using dCas9-mediated inducible recruitment (FIRE-Cas9). We show that recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 histone mark and polycomb repressive-1 and repressive-2 complex proteins, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.