{"title":"探究巨型芽孢杆菌 NL3 重组 α 淀粉酶 BmaN1 C 端区域的功能。","authors":"Fina Khaerunnisa Frima, Muhammad Akbar Thufail, Indri Novia Madhani, Zahrotun Nafisah, Sofi Siti Shofiyah, Ayra Ulpiyana, Fernita Puspasari, Reza Aditama, Ihsanawati Ihsanawati, Dessy Natalia","doi":"10.1128/spectrum.03351-23","DOIUrl":null,"url":null,"abstract":"<p><p>The α-amylase BmaN1 from <i>Bacillus megaterium</i> NL3 is a member of GH13_45 subfamily that has a conserved C-terminal region of approximately 30 residues. This region features a motif of five aromatic amino acids predicted to play a role in starch binding. This study aimed to unravel the role of the C-terminal region in starch hydrolysis. The full-length and C-terminally truncated forms of BmaN1 (BmaN1∆C) were expressed in <i>Escherichia coli</i> ArcticExpress (DE3), resulting in proteins with molecular weights of 56 kDa and 49 kDa, respectively. They exhibited comparable enzymatic activity in the hydrolysis of soluble starch, displaying versatility across a wide range of pH values, temperatures, and NaCl concentrations. BmaN1 and BmaN1∆C activities were inhibited by acarbose and were reduced by SDS and EDTA. In terms of binding and degrading the starch granules, BmaN1∆C showed lower affinity and activity in comparison to BmaN1. Our study indicates that the C-terminal region of BmaN1 significantly enhances its binding affinity and degrading the raw starches.IMPORTANCEα-Amylase (EC 3.2.1.1) stands as an endo-acting enzyme, essential for catalyzing the hydrolysis of α-1,4 glycosidic bonds within starch molecules. The relevance of α-amylases in biotechnological applications is substantial, constituting approximately 30% of the global enzyme market. Among these enzymes, BmaN1 was the first α-amylase identified to possess distinct catalytic residues within the GH13 family. BmaN1 from <i>B. megaterium</i> NL3 belongs to the GH13_45 subfamily. This subfamily is characterized by a conserved C-terminal region consisting of approximately 30 residues that contains a motif of five aromatic residues predicted to be involved in starch binding. Our study shows that the C-terminal effectively contributes to binding and degrading the raw starch granules. This pioneering research on BmaN1 expands our understanding of α-amylases and holds promise for innovative biotechnological advancements.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probing the function of C-terminal region of recombinant α-amylase BmaN1 from <i>Bacillus megaterium</i> NL3.\",\"authors\":\"Fina Khaerunnisa Frima, Muhammad Akbar Thufail, Indri Novia Madhani, Zahrotun Nafisah, Sofi Siti Shofiyah, Ayra Ulpiyana, Fernita Puspasari, Reza Aditama, Ihsanawati Ihsanawati, Dessy Natalia\",\"doi\":\"10.1128/spectrum.03351-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The α-amylase BmaN1 from <i>Bacillus megaterium</i> NL3 is a member of GH13_45 subfamily that has a conserved C-terminal region of approximately 30 residues. This region features a motif of five aromatic amino acids predicted to play a role in starch binding. This study aimed to unravel the role of the C-terminal region in starch hydrolysis. The full-length and C-terminally truncated forms of BmaN1 (BmaN1∆C) were expressed in <i>Escherichia coli</i> ArcticExpress (DE3), resulting in proteins with molecular weights of 56 kDa and 49 kDa, respectively. They exhibited comparable enzymatic activity in the hydrolysis of soluble starch, displaying versatility across a wide range of pH values, temperatures, and NaCl concentrations. BmaN1 and BmaN1∆C activities were inhibited by acarbose and were reduced by SDS and EDTA. In terms of binding and degrading the starch granules, BmaN1∆C showed lower affinity and activity in comparison to BmaN1. Our study indicates that the C-terminal region of BmaN1 significantly enhances its binding affinity and degrading the raw starches.IMPORTANCEα-Amylase (EC 3.2.1.1) stands as an endo-acting enzyme, essential for catalyzing the hydrolysis of α-1,4 glycosidic bonds within starch molecules. The relevance of α-amylases in biotechnological applications is substantial, constituting approximately 30% of the global enzyme market. Among these enzymes, BmaN1 was the first α-amylase identified to possess distinct catalytic residues within the GH13 family. BmaN1 from <i>B. megaterium</i> NL3 belongs to the GH13_45 subfamily. This subfamily is characterized by a conserved C-terminal region consisting of approximately 30 residues that contains a motif of five aromatic residues predicted to be involved in starch binding. Our study shows that the C-terminal effectively contributes to binding and degrading the raw starch granules. This pioneering research on BmaN1 expands our understanding of α-amylases and holds promise for innovative biotechnological advancements.</p>\",\"PeriodicalId\":18670,\"journal\":{\"name\":\"Microbiology spectrum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology spectrum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/spectrum.03351-23\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.03351-23","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Probing the function of C-terminal region of recombinant α-amylase BmaN1 from Bacillus megaterium NL3.
The α-amylase BmaN1 from Bacillus megaterium NL3 is a member of GH13_45 subfamily that has a conserved C-terminal region of approximately 30 residues. This region features a motif of five aromatic amino acids predicted to play a role in starch binding. This study aimed to unravel the role of the C-terminal region in starch hydrolysis. The full-length and C-terminally truncated forms of BmaN1 (BmaN1∆C) were expressed in Escherichia coli ArcticExpress (DE3), resulting in proteins with molecular weights of 56 kDa and 49 kDa, respectively. They exhibited comparable enzymatic activity in the hydrolysis of soluble starch, displaying versatility across a wide range of pH values, temperatures, and NaCl concentrations. BmaN1 and BmaN1∆C activities were inhibited by acarbose and were reduced by SDS and EDTA. In terms of binding and degrading the starch granules, BmaN1∆C showed lower affinity and activity in comparison to BmaN1. Our study indicates that the C-terminal region of BmaN1 significantly enhances its binding affinity and degrading the raw starches.IMPORTANCEα-Amylase (EC 3.2.1.1) stands as an endo-acting enzyme, essential for catalyzing the hydrolysis of α-1,4 glycosidic bonds within starch molecules. The relevance of α-amylases in biotechnological applications is substantial, constituting approximately 30% of the global enzyme market. Among these enzymes, BmaN1 was the first α-amylase identified to possess distinct catalytic residues within the GH13 family. BmaN1 from B. megaterium NL3 belongs to the GH13_45 subfamily. This subfamily is characterized by a conserved C-terminal region consisting of approximately 30 residues that contains a motif of five aromatic residues predicted to be involved in starch binding. Our study shows that the C-terminal effectively contributes to binding and degrading the raw starch granules. This pioneering research on BmaN1 expands our understanding of α-amylases and holds promise for innovative biotechnological advancements.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.