通过新一代疗法和计算病理学改变个性化癌症治疗模式。

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Molecular Oncology Pub Date : 2024-11-01 Epub Date: 2024-08-30 DOI:10.1002/1878-0261.13724
Jorge S Reis-Filho, Maurizio Scaltriti, Ansh Kapil, Hadassah Sade, Susan Galbraith
{"title":"通过新一代疗法和计算病理学改变个性化癌症治疗模式。","authors":"Jorge S Reis-Filho, Maurizio Scaltriti, Ansh Kapil, Hadassah Sade, Susan Galbraith","doi":"10.1002/1878-0261.13724","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of novel therapeutic agents such as antibody-drug conjugates, radio-conjugates, T-cell engagers, and chimeric antigen receptor cell therapies represents a paradigm shift in oncology. Cell-surface target quantification, quantitative assessment of receptor internalization, and changes in the tumor microenvironment (TME) are essential variables in the development of biomarkers for patient selection and therapeutic response. Assessing these parameters requires capabilities that transcend those of traditional biomarker approaches based on immunohistochemistry, in situ hybridization and/or sequencing assays. Computational pathology is emerging as a transformative solution in this new therapeutic landscape, enabling detailed assessment of not only target presence, expression levels, and intra-tumor distribution but also of additional phenotypic features of tumor cells and their surrounding TME. Here, we delineate the pivotal role of computational pathology in enhancing the efficacy and specificity of these advanced therapeutics, underscoring the integration of novel artificial intelligence models that promise to revolutionize biomarker discovery and drug development.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2607-2611"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547233/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shifting the paradigm in personalized cancer care through next-generation therapeutics and computational pathology.\",\"authors\":\"Jorge S Reis-Filho, Maurizio Scaltriti, Ansh Kapil, Hadassah Sade, Susan Galbraith\",\"doi\":\"10.1002/1878-0261.13724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incorporation of novel therapeutic agents such as antibody-drug conjugates, radio-conjugates, T-cell engagers, and chimeric antigen receptor cell therapies represents a paradigm shift in oncology. Cell-surface target quantification, quantitative assessment of receptor internalization, and changes in the tumor microenvironment (TME) are essential variables in the development of biomarkers for patient selection and therapeutic response. Assessing these parameters requires capabilities that transcend those of traditional biomarker approaches based on immunohistochemistry, in situ hybridization and/or sequencing assays. Computational pathology is emerging as a transformative solution in this new therapeutic landscape, enabling detailed assessment of not only target presence, expression levels, and intra-tumor distribution but also of additional phenotypic features of tumor cells and their surrounding TME. Here, we delineate the pivotal role of computational pathology in enhancing the efficacy and specificity of these advanced therapeutics, underscoring the integration of novel artificial intelligence models that promise to revolutionize biomarker discovery and drug development.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"2607-2611\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547233/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13724\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13724","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

新型治疗药物(如抗体-药物结合物、放射性结合物、T 细胞吞噬剂和嵌合抗原受体细胞疗法)的应用代表了肿瘤学的范式转变。细胞表面靶点定量、受体内化定量评估以及肿瘤微环境(TME)的变化是开发患者选择和治疗反应生物标志物的基本变量。评估这些参数需要超越基于免疫组化、原位杂交和/或测序分析的传统生物标记方法的能力。计算病理学正在成为这一新治疗领域的变革性解决方案,它不仅能对靶点的存在、表达水平和肿瘤内分布进行详细评估,还能对肿瘤细胞及其周围 TME 的其他表型特征进行评估。在这里,我们阐述了计算病理学在提高这些先进疗法的疗效和特异性方面的关键作用,强调了新型人工智能模型的整合有望彻底改变生物标记物的发现和药物开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shifting the paradigm in personalized cancer care through next-generation therapeutics and computational pathology.

The incorporation of novel therapeutic agents such as antibody-drug conjugates, radio-conjugates, T-cell engagers, and chimeric antigen receptor cell therapies represents a paradigm shift in oncology. Cell-surface target quantification, quantitative assessment of receptor internalization, and changes in the tumor microenvironment (TME) are essential variables in the development of biomarkers for patient selection and therapeutic response. Assessing these parameters requires capabilities that transcend those of traditional biomarker approaches based on immunohistochemistry, in situ hybridization and/or sequencing assays. Computational pathology is emerging as a transformative solution in this new therapeutic landscape, enabling detailed assessment of not only target presence, expression levels, and intra-tumor distribution but also of additional phenotypic features of tumor cells and their surrounding TME. Here, we delineate the pivotal role of computational pathology in enhancing the efficacy and specificity of these advanced therapeutics, underscoring the integration of novel artificial intelligence models that promise to revolutionize biomarker discovery and drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
期刊最新文献
Integrative analysis of circulating tumor cells (CTCs) and exosomes from small-cell lung cancer (SCLC) patients: a comprehensive approach. Platelet-activating factor: a potential therapeutic target to improve cancer immunotherapy. Global metabolomic profiling of tumor tissue and paired serum samples to identify biomarkers for response to neoadjuvant FOLFIRINOX treatment of human pancreatic cancer. Gut microbiota diversity is prognostic and associated with benefit from chemo-immunotherapy in metastatic triple-negative breast cancer. Integrative transcriptomic analysis identifies emetine as a promising candidate for overcoming acquired resistance to ALK inhibitors in lung cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1