GLP-1药物semaglutide和tirzepatide不会改变5XFAD和APP/PS1小鼠与疾病相关的病理、行为或认知功能。

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Molecular Metabolism Pub Date : 2024-08-30 DOI:10.1016/j.molmet.2024.102019
Leticia Forny Germano, Jacqueline A. Koehler, Laurie L. Baggio, Fiona Cui, Chi Kin Wong, Nikolaj Rittig, Xiemin Cao, Dianne Matthews, Daniel J. Drucker
{"title":"GLP-1药物semaglutide和tirzepatide不会改变5XFAD和APP/PS1小鼠与疾病相关的病理、行为或认知功能。","authors":"Leticia Forny Germano,&nbsp;Jacqueline A. Koehler,&nbsp;Laurie L. Baggio,&nbsp;Fiona Cui,&nbsp;Chi Kin Wong,&nbsp;Nikolaj Rittig,&nbsp;Xiemin Cao,&nbsp;Dianne Matthews,&nbsp;Daniel J. Drucker","doi":"10.1016/j.molmet.2024.102019","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The development of glucagon-like peptide-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has been accompanied by evidence for anti-inflammatory and cytoprotective actions in the heart, blood vessels, kidney, and brain. Whether GLP-1R agonists might be useful clinically for attenuating deterioration of cognitive dysfunction and reducing the progression of Alzheimer's disease remains uncertain.</p></div><div><h3>Methods</h3><p>Here we evaluated the actions of semaglutide and tirzepatide, clinically distinct GLP-1 medicines, in two mouse models of neurodegeneration.</p></div><div><h3>Results</h3><p>Semaglutide reduced body weight and improved glucose tolerance in 12-month-old male and female 5XFAD and APP/PS1 mice, consistent with pharmacological engagement of the GLP-1R. Nevertheless, amyloid plaque density was not different in the cerebral cortex, hippocampus, or subiculum of semaglutide-treated 12-month-old 5XFAD and APP/PS1 mice. IBA1 and GFAP expression were increased in the hippocampus of 5XFAD and APP/PS1 mice but were not reduced by semaglutide. Moreover, parameters of neurobehavioral and cognitive function evaluated using Open Field testing or the Morris water maze were not improved following treatment with semaglutide. To explore whether incretin therapies might be more effective in younger mice, we studied semaglutide and tirzepatide action in 6-month-old male and female 5XFAD mice. Neither semaglutide nor tirzepatide modified the extent of plaque accumulation, hippocampal IBA1+ or GFAP+ cells, or parameters of neurobehavioral testing, despite improving glucose tolerance and reducing body weight. mRNA biomarkers of inflammation and neurodegeneration were increased in the hippocampus of male and female 5XFAD mice but were not reduced after treatment with semaglutide or tirzepatide.</p></div><div><h3>Conclusions</h3><p>Collectively, these findings reveal preservation of the metabolic actions of two GLP-1 medicines, semaglutide and tirzepatide, yet inability to detect improvement in structural and functional parameters of neurodegeneration in two mouse models of Alzheimer's disease.</p></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"89 ","pages":"Article 102019"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212877824001509/pdfft?md5=12155cdd102ffb422b4aa79f1663591d&pid=1-s2.0-S2212877824001509-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The GLP-1 medicines semaglutide and tirzepatide do not alter disease-related pathology, behaviour or cognitive function in 5XFAD and APP/PS1 mice\",\"authors\":\"Leticia Forny Germano,&nbsp;Jacqueline A. Koehler,&nbsp;Laurie L. Baggio,&nbsp;Fiona Cui,&nbsp;Chi Kin Wong,&nbsp;Nikolaj Rittig,&nbsp;Xiemin Cao,&nbsp;Dianne Matthews,&nbsp;Daniel J. Drucker\",\"doi\":\"10.1016/j.molmet.2024.102019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>The development of glucagon-like peptide-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has been accompanied by evidence for anti-inflammatory and cytoprotective actions in the heart, blood vessels, kidney, and brain. Whether GLP-1R agonists might be useful clinically for attenuating deterioration of cognitive dysfunction and reducing the progression of Alzheimer's disease remains uncertain.</p></div><div><h3>Methods</h3><p>Here we evaluated the actions of semaglutide and tirzepatide, clinically distinct GLP-1 medicines, in two mouse models of neurodegeneration.</p></div><div><h3>Results</h3><p>Semaglutide reduced body weight and improved glucose tolerance in 12-month-old male and female 5XFAD and APP/PS1 mice, consistent with pharmacological engagement of the GLP-1R. Nevertheless, amyloid plaque density was not different in the cerebral cortex, hippocampus, or subiculum of semaglutide-treated 12-month-old 5XFAD and APP/PS1 mice. IBA1 and GFAP expression were increased in the hippocampus of 5XFAD and APP/PS1 mice but were not reduced by semaglutide. Moreover, parameters of neurobehavioral and cognitive function evaluated using Open Field testing or the Morris water maze were not improved following treatment with semaglutide. To explore whether incretin therapies might be more effective in younger mice, we studied semaglutide and tirzepatide action in 6-month-old male and female 5XFAD mice. Neither semaglutide nor tirzepatide modified the extent of plaque accumulation, hippocampal IBA1+ or GFAP+ cells, or parameters of neurobehavioral testing, despite improving glucose tolerance and reducing body weight. mRNA biomarkers of inflammation and neurodegeneration were increased in the hippocampus of male and female 5XFAD mice but were not reduced after treatment with semaglutide or tirzepatide.</p></div><div><h3>Conclusions</h3><p>Collectively, these findings reveal preservation of the metabolic actions of two GLP-1 medicines, semaglutide and tirzepatide, yet inability to detect improvement in structural and functional parameters of neurodegeneration in two mouse models of Alzheimer's disease.</p></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"89 \",\"pages\":\"Article 102019\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001509/pdfft?md5=12155cdd102ffb422b4aa79f1663591d&pid=1-s2.0-S2212877824001509-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001509\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001509","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:在开发用于治疗 2 型糖尿病和肥胖症的胰高血糖素样肽-1 受体(GLP-1R)激动剂的同时,有证据表明其在心脏、血管、肾脏和大脑中具有抗炎和细胞保护作用。GLP-1R激动剂在临床上是否可用于减轻认知功能障碍的恶化和减少阿尔茨海默病的进展仍不确定:结果:在 12 个月大的雄性和雌性 5XFAD 和 APP/PS1 小鼠中,塞马鲁肽减轻了体重并改善了葡萄糖耐量,这与 GLP-1R 的药理作用一致。然而,经塞马鲁肽处理的12月龄5XFAD和APP/PS1小鼠的大脑皮层、海马或脑下丘的淀粉样斑块密度并无差异。5XFAD和APP/PS1小鼠海马中的IBA1和GFAP表达增加,但塞马鲁肽并未减少其表达。此外,使用开放场测试或莫里斯水迷宫评估的神经行为和认知功能参数在使用塞马鲁肽治疗后也没有得到改善。为了探究增量素疗法是否对年龄更小的小鼠更有效,我们对6个月大的雄性和雌性5XFAD小鼠进行了研究。雄性和雌性 5XFAD 小鼠海马中炎症和神经退行性变的 mRNA 生物标志物增加了,但在使用 semaglutide 或 tirzepatide 治疗后并没有减少:总之,这些研究结果表明,两种 GLP-1 药物(semaglutide 和 tirzepatide)的代谢作用得以保留,但无法检测到两种阿尔茨海默病小鼠模型中神经退行性变的结构和功能参数的改善情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The GLP-1 medicines semaglutide and tirzepatide do not alter disease-related pathology, behaviour or cognitive function in 5XFAD and APP/PS1 mice

Objective

The development of glucagon-like peptide-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has been accompanied by evidence for anti-inflammatory and cytoprotective actions in the heart, blood vessels, kidney, and brain. Whether GLP-1R agonists might be useful clinically for attenuating deterioration of cognitive dysfunction and reducing the progression of Alzheimer's disease remains uncertain.

Methods

Here we evaluated the actions of semaglutide and tirzepatide, clinically distinct GLP-1 medicines, in two mouse models of neurodegeneration.

Results

Semaglutide reduced body weight and improved glucose tolerance in 12-month-old male and female 5XFAD and APP/PS1 mice, consistent with pharmacological engagement of the GLP-1R. Nevertheless, amyloid plaque density was not different in the cerebral cortex, hippocampus, or subiculum of semaglutide-treated 12-month-old 5XFAD and APP/PS1 mice. IBA1 and GFAP expression were increased in the hippocampus of 5XFAD and APP/PS1 mice but were not reduced by semaglutide. Moreover, parameters of neurobehavioral and cognitive function evaluated using Open Field testing or the Morris water maze were not improved following treatment with semaglutide. To explore whether incretin therapies might be more effective in younger mice, we studied semaglutide and tirzepatide action in 6-month-old male and female 5XFAD mice. Neither semaglutide nor tirzepatide modified the extent of plaque accumulation, hippocampal IBA1+ or GFAP+ cells, or parameters of neurobehavioral testing, despite improving glucose tolerance and reducing body weight. mRNA biomarkers of inflammation and neurodegeneration were increased in the hippocampus of male and female 5XFAD mice but were not reduced after treatment with semaglutide or tirzepatide.

Conclusions

Collectively, these findings reveal preservation of the metabolic actions of two GLP-1 medicines, semaglutide and tirzepatide, yet inability to detect improvement in structural and functional parameters of neurodegeneration in two mouse models of Alzheimer's disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
期刊最新文献
AMPK regulates the maintenance and remodelling of the neuromuscular junction. FGF21 acts in the brain to drive macronutrient-specific changes in behavioral motivation and brain reward signaling. The immune checkpoint molecule B7-H4 regulates β-cell mass and insulin secretion by modulating cholesterol metabolism through Stat5 signalling. Senescent Cell Depletion Alleviates Obesity-related Metabolic and Cardiac Disorders. Incretin-responsive human pancreatic adipose tissue organoids: A functional model for fatty pancreas research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1