高通量筛选发现布洛芬是一种用于协同癌症免疫疗法的小型细胞外囊泡 PD-L1 抑制剂。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-08-31 DOI:10.1016/j.ymthe.2024.08.027
Zhuo-Kun Chen, Shuo Zheng, Yan Long, Kui-Ming Wang, Bo-Lin Xiao, Jin-Bang Li, Wei Zhang, Heng Song, Gang Chen
{"title":"高通量筛选发现布洛芬是一种用于协同癌症免疫疗法的小型细胞外囊泡 PD-L1 抑制剂。","authors":"Zhuo-Kun Chen, Shuo Zheng, Yan Long, Kui-Ming Wang, Bo-Lin Xiao, Jin-Bang Li, Wei Zhang, Heng Song, Gang Chen","doi":"10.1016/j.ymthe.2024.08.027","DOIUrl":null,"url":null,"abstract":"<p><p>Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening (TAP-HTS) strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1<sup>+</sup> sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS). Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases (COX1 or COX2). Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma (OSCC) mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput screening identifies ibuprofen as a small extracellular vesicle PD-L1 inhibitor for synergistic cancer immunotherapy.\",\"authors\":\"Zhuo-Kun Chen, Shuo Zheng, Yan Long, Kui-Ming Wang, Bo-Lin Xiao, Jin-Bang Li, Wei Zhang, Heng Song, Gang Chen\",\"doi\":\"10.1016/j.ymthe.2024.08.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening (TAP-HTS) strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1<sup>+</sup> sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS). Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases (COX1 or COX2). Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma (OSCC) mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.08.027\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.08.027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤衍生的小细胞外囊泡 (sEV) 上的程序性死亡配体 1 (PD-L1) 与宿主免疫细胞上的 PD-1 受体相互作用,从而限制了治疗效果。靶向分泌 sEV PD-L1 已成为增强免疫疗法的一种有前途的策略。然而,小分子抑制剂的缺乏给临床转化带来了挑战。在本研究中,我们开发了一种靶点和表型双驱动高通量筛选(TAP-HTS)策略,该策略将虚拟筛选与基于纳米流的实验验证相结合。我们发现布洛芬(IBP)是一种有效靶向 sEV PD-L1 分泌的新型抑制剂。IBP 通过与 sEV 生物发生的关键调控因子--肝细胞生长因子调控酪氨酸激酶底物(HRS)发生物理作用,破坏了肿瘤细胞中 PD-L1+ sEV 的生物发生和分泌。值得注意的是,IBP 的作用机制不同于其通常已知的靶点--环氧化酶(COX1 或 COX2)。在黑色素瘤和口腔鳞状细胞癌(OSCC)小鼠模型中,施用 IBP 可刺激抗肿瘤免疫,增强抗 PD-1 疗法的疗效。为了解决潜在的不良反应,我们进一步开发了一种用于局部应用的 IBP 凝胶,该凝胶与抗 PD-1 治疗联合使用时显示出显著的疗效。这种特异性小抑制剂的发现为建立持久的全身性抗肿瘤免疫提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput screening identifies ibuprofen as a small extracellular vesicle PD-L1 inhibitor for synergistic cancer immunotherapy.

Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening (TAP-HTS) strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1+ sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS). Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases (COX1 or COX2). Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma (OSCC) mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Engineering a solution for allogeneic CAR-T rejection. Targeting Rap1b signaling cascades with CDNF: Modulating Platelet Activation, Regulating Plasma Oxylipins and Mitigating Reperfusion Injury in stroke. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. A chimeric anti-inflammatory and anti-vascularization immunomodulator prevents high-risk corneal transplantation rejection via ex vivo gene therapy. Case study of CD19-directed chimeric antigen receptor T-cell therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis™ phase I/II trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1