Kim Hoa Ho, Marleen Trapp, Catello Guida, Ekaterina L Ivanova, Anchel De Jaime-Soguero, Ammar Jabali, Christian Thomas, Alena Salasova, Ondřej Bernatík, Chiara Salio, Sandra Horschitz, Martin Hasselblatt, Marco Sassoe-Pognetto, Lukáš Čajánek, Hiroshi Ishikawa, Horst Schroten, Christian Schwerk, Sergio P Acebrón, Peter Angel, Philipp Koch, Annarita Patrizi
{"title":"Wnt/β-catenin信号的激活对脉络丛的肿瘤发生至关重要。","authors":"Kim Hoa Ho, Marleen Trapp, Catello Guida, Ekaterina L Ivanova, Anchel De Jaime-Soguero, Ammar Jabali, Christian Thomas, Alena Salasova, Ondřej Bernatík, Chiara Salio, Sandra Horschitz, Martin Hasselblatt, Marco Sassoe-Pognetto, Lukáš Čajánek, Hiroshi Ishikawa, Horst Schroten, Christian Schwerk, Sergio P Acebrón, Peter Angel, Philipp Koch, Annarita Patrizi","doi":"10.1093/neuonc/noae176","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Choroid plexus (ChP) is the secretory epithelial structure located in brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of the tumor pathology and limited availability of valid models.</p><p><strong>Methods: </strong>Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and over-expression of Wnt/β-catenin pathway genes. 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC.</p><p><strong>Results: </strong>We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knock-out of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelia cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids.</p><p><strong>Conclusions: </strong>Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus.\",\"authors\":\"Kim Hoa Ho, Marleen Trapp, Catello Guida, Ekaterina L Ivanova, Anchel De Jaime-Soguero, Ammar Jabali, Christian Thomas, Alena Salasova, Ondřej Bernatík, Chiara Salio, Sandra Horschitz, Martin Hasselblatt, Marco Sassoe-Pognetto, Lukáš Čajánek, Hiroshi Ishikawa, Horst Schroten, Christian Schwerk, Sergio P Acebrón, Peter Angel, Philipp Koch, Annarita Patrizi\",\"doi\":\"10.1093/neuonc/noae176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Choroid plexus (ChP) is the secretory epithelial structure located in brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of the tumor pathology and limited availability of valid models.</p><p><strong>Methods: </strong>Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and over-expression of Wnt/β-catenin pathway genes. 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC.</p><p><strong>Results: </strong>We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knock-out of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelia cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids.</p><p><strong>Conclusions: </strong>Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.</p>\",\"PeriodicalId\":19377,\"journal\":{\"name\":\"Neuro-oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/neuonc/noae176\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae176","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus.
Background: Choroid plexus (ChP) is the secretory epithelial structure located in brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of the tumor pathology and limited availability of valid models.
Methods: Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and over-expression of Wnt/β-catenin pathway genes. 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC.
Results: We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knock-out of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelia cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids.
Conclusions: Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.