"小鼠口服冷血浆活化水后的神经行为毒性"。

IF 3.4 3区 医学 Q2 NEUROSCIENCES Neurotoxicology Pub Date : 2024-08-30 DOI:10.1016/j.neuro.2024.08.007
Ghada Abd El-Reda , Usama T. Mahmoud , Fatma Abo Zakaib Ali , Fatma M. Abdel-Maksoud , Manal A.M. Mahmoud , F.M. El-Hossary
{"title":"\"小鼠口服冷血浆活化水后的神经行为毒性\"。","authors":"Ghada Abd El-Reda ,&nbsp;Usama T. Mahmoud ,&nbsp;Fatma Abo Zakaib Ali ,&nbsp;Fatma M. Abdel-Maksoud ,&nbsp;Manal A.M. Mahmoud ,&nbsp;F.M. El-Hossary","doi":"10.1016/j.neuro.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"105 ","pages":"Pages 45-57"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice\",\"authors\":\"Ghada Abd El-Reda ,&nbsp;Usama T. Mahmoud ,&nbsp;Fatma Abo Zakaib Ali ,&nbsp;Fatma M. Abdel-Maksoud ,&nbsp;Manal A.M. Mahmoud ,&nbsp;F.M. El-Hossary\",\"doi\":\"10.1016/j.neuro.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.</p></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"105 \",\"pages\":\"Pages 45-57\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X24001037\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X24001037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

冷等离子体活化水(PAW)是一种新技术,最近被用于生物医学研究;尽管具有潜力,但对其安全性的评估仍然不足。本研究探讨了 PAW 对小鼠行为反应和脑组织病理学的影响。将十周大的雌性白化小鼠分为三组,每组 10 只(5 个重复,2 只/笼),分别口服蒸馏水(DW)或暴露于冷大气等离子体(CAP)3 分钟(PAW-3)或 15 分钟(PAW-15)的蒸馏水,剂量为 200 微升/只(3 次/周),连续四周。与 DW 相比,PAW 的理化性质发生了改变。与对照组相比,暴露于 PAW 的小鼠的穴居活动、大理石埋藏能力和新物体识别能力均有所下降,这表明小鼠的神经行为可能发生了改变。PAW处理组的脑组织出现了明显的组织学病变,包括神经细胞坏死、血管充血和Purkinje细胞变性,证实了其神经毒性作用。经 PAW 处理的小鼠脑组织中 NF-κB 和 iNOS 呈阳性反应,证实了组织病理学结果,表明存在神经炎症和氧化应激。这项研究强调了进一步研究 PAW 的安全性和最佳治疗方案的必要性,以减轻生物医学研究中潜在的神经行为毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice

Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicology
Neurotoxicology 医学-毒理学
CiteScore
6.80
自引率
5.90%
发文量
161
审稿时长
70 days
期刊介绍: NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.
期刊最新文献
Insilico and Invivo protective effect of biochanin-A mitigating doxorubicin- induced cognitive deficits and neuroinflammation: Insights to the role of p-Tau and miR-132. BPDE induces ferroptosis in hippocampal neurons through ACSL3 suppression. The stoichiometry of the α4β2 neuronal nicotinic acetylcholine receptors determines the pharmacological properties of the neonicotinoids, and recently introduced butenolide and sulfoximine. Acyclovir provides protection against 6-OHDA-induced neurotoxicity in SH-SY5Y cells through the kynurenine pathway. Early-life bisphenol A exposure causes detrimental age-related changes in anxiety, depression, learning, and memory in juvenile and adult male rats: Involvement of NMDAR/PSD-95-PTEN/AKT signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1