Tong Wu, Yuanyuan Zhang, Kun Xia, Shaohua Hu, Shangpei Wang
{"title":"利用因果结构协方差网络评估多系统萎缩帕金森变异型的进行性灰质萎缩。","authors":"Tong Wu, Yuanyuan Zhang, Kun Xia, Shaohua Hu, Shangpei Wang","doi":"10.1007/s00234-024-03456-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Multiple system atrophy (MSA), a rare neurodegenerative disease, is usually accompanied by brain morphological alterations. However, the causal relationships between progressive gray matter atrophy in MSA parkinsonian (MSA-P) subtype remain unknown.</p><p><strong>Methods: </strong>In total, thirty-five MSA-P patients and thirty-five healthy controls (HC) underwent three-dimensional high-resolution T<sub>1</sub>-weighted structural imaging and voxel-based morphometry analysis. The causal structural covariance network (CaSCN) of gray matter was assessed to explore the causal relationships in MSA-P.</p><p><strong>Results: </strong>With greater illness duration, the reduction of gray matter was originated from right cerebellum and progressed to bilateral cerebellum, fusiform gyrus, insula, putamen, caudate nucleus, frontal lobe, right angular gyrus, right precuneus, left middle occipital lobe and left inferior temporal lobe, then expanded to midbrain, bilateral para-hippocampus, thalamus, temporal lobe, inferior parietal lobule (IPL), precentral gyrus, postcentral gyrus and middle cingulate cortex. The right cerebellum was revealed to be the core node of the directional network and projected positive causal effects to bilateral cerebellum, caudate nucleus and left IPL.</p><p><strong>Conclusion: </strong>MSA-P patients showed progression of gray matter atrophy over time, with the right cerebellum probably as a primary hub. Furthermore, the early structural vulnerability of cerebellum in MSA-P may play a pivotal role in the modulation of motor and non-motor circuits at the structural level.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":"1931-1939"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive gray matter atrophy in parkinsonian variant of multiple system atrophy assessed by using causal structural covariance network.\",\"authors\":\"Tong Wu, Yuanyuan Zhang, Kun Xia, Shaohua Hu, Shangpei Wang\",\"doi\":\"10.1007/s00234-024-03456-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Multiple system atrophy (MSA), a rare neurodegenerative disease, is usually accompanied by brain morphological alterations. However, the causal relationships between progressive gray matter atrophy in MSA parkinsonian (MSA-P) subtype remain unknown.</p><p><strong>Methods: </strong>In total, thirty-five MSA-P patients and thirty-five healthy controls (HC) underwent three-dimensional high-resolution T<sub>1</sub>-weighted structural imaging and voxel-based morphometry analysis. The causal structural covariance network (CaSCN) of gray matter was assessed to explore the causal relationships in MSA-P.</p><p><strong>Results: </strong>With greater illness duration, the reduction of gray matter was originated from right cerebellum and progressed to bilateral cerebellum, fusiform gyrus, insula, putamen, caudate nucleus, frontal lobe, right angular gyrus, right precuneus, left middle occipital lobe and left inferior temporal lobe, then expanded to midbrain, bilateral para-hippocampus, thalamus, temporal lobe, inferior parietal lobule (IPL), precentral gyrus, postcentral gyrus and middle cingulate cortex. The right cerebellum was revealed to be the core node of the directional network and projected positive causal effects to bilateral cerebellum, caudate nucleus and left IPL.</p><p><strong>Conclusion: </strong>MSA-P patients showed progression of gray matter atrophy over time, with the right cerebellum probably as a primary hub. Furthermore, the early structural vulnerability of cerebellum in MSA-P may play a pivotal role in the modulation of motor and non-motor circuits at the structural level.</p>\",\"PeriodicalId\":19422,\"journal\":{\"name\":\"Neuroradiology\",\"volume\":\" \",\"pages\":\"1931-1939\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-024-03456-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03456-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Progressive gray matter atrophy in parkinsonian variant of multiple system atrophy assessed by using causal structural covariance network.
Introduction: Multiple system atrophy (MSA), a rare neurodegenerative disease, is usually accompanied by brain morphological alterations. However, the causal relationships between progressive gray matter atrophy in MSA parkinsonian (MSA-P) subtype remain unknown.
Methods: In total, thirty-five MSA-P patients and thirty-five healthy controls (HC) underwent three-dimensional high-resolution T1-weighted structural imaging and voxel-based morphometry analysis. The causal structural covariance network (CaSCN) of gray matter was assessed to explore the causal relationships in MSA-P.
Results: With greater illness duration, the reduction of gray matter was originated from right cerebellum and progressed to bilateral cerebellum, fusiform gyrus, insula, putamen, caudate nucleus, frontal lobe, right angular gyrus, right precuneus, left middle occipital lobe and left inferior temporal lobe, then expanded to midbrain, bilateral para-hippocampus, thalamus, temporal lobe, inferior parietal lobule (IPL), precentral gyrus, postcentral gyrus and middle cingulate cortex. The right cerebellum was revealed to be the core node of the directional network and projected positive causal effects to bilateral cerebellum, caudate nucleus and left IPL.
Conclusion: MSA-P patients showed progression of gray matter atrophy over time, with the right cerebellum probably as a primary hub. Furthermore, the early structural vulnerability of cerebellum in MSA-P may play a pivotal role in the modulation of motor and non-motor circuits at the structural level.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.