{"title":"巨噬细胞靶向氧化石墨烯纳米系统协同抗生素杀灭和宿主免疫防御治疗结核病","authors":"","doi":"10.1016/j.phrs.2024.107379","DOIUrl":null,"url":null,"abstract":"<div><p>Tuberculosis (TB), a deadly disease caused by <em>Mycobacterium tuberculosis</em> (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by <em>in vitro</em> macrophages and <em>ex vivo</em> macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824003244/pdfft?md5=4aa5ccb131a64c818f3cfdcc918df90a&pid=1-s2.0-S1043661824003244-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Macrophage targeted graphene oxide nanosystem synergize antibiotic killing and host immune defense for Tuberculosis Therapy\",\"authors\":\"\",\"doi\":\"10.1016/j.phrs.2024.107379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tuberculosis (TB), a deadly disease caused by <em>Mycobacterium tuberculosis</em> (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by <em>in vitro</em> macrophages and <em>ex vivo</em> macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.</p></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003244/pdfft?md5=4aa5ccb131a64c818f3cfdcc918df90a&pid=1-s2.0-S1043661824003244-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003244\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003244","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Macrophage targeted graphene oxide nanosystem synergize antibiotic killing and host immune defense for Tuberculosis Therapy
Tuberculosis (TB), a deadly disease caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the top killers among infectious diseases worldwide. How to increase targeting effects of current anti-TB chemotherapeutics and enhance anti-TB immunological responses remains a big challenge in TB and drug-resistant TB treatment. Here, mannose functionalized and polyetherimide protected graphene oxide system (GO-PEI-MAN) was designed for macrophage-targeted antibiotic (rifampicin) and autophagy inducer (carbamazepine) delivery to achieve more effective Mtb killings by combining targeted drug killing and host immunological clearance. GO-PEI-MAN system demonstrated selective uptake by in vitro macrophages and ex vivo macrophages from macaques. The endocytosed GO-PEI-MAN system would be transported into lysosomes, where the drug loaded Rif@Car@GO-PEI-MAN system would undergo accelerated drug release in acidic lysosomal conditions. Rif@Car@GO-PEI-MAN could significantly promote autophagy and apoptosis in Mtb infected macrophages, as well as induce anti-bacterial M1 polarization of Mtb infected macrophages to increase anti-bacterial IFN-γ and nitric oxide production. Collectively, Rif@Car@GO-PEI-MAN demonstrated effectively enhanced intracellular Mtb killing effects than rifampicin, carbamazepine or GO-PEI-MAN alone in Mtb infected macrophages, and could significantly reduce mycobacterial burdens in the lung of infected mice with alleviated pathology and inflammation without systemic toxicity. This macrophage targeted nanosystem synergizing increased drug killing efficiency and enhanced host immunological defense may be served as more effective therapeutics against TB and drug-resistant TB.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.