{"title":"干性和湿性AMD患者的血管内皮生长因子和ELAVL1/HuR蛋白水平均升高。RPE 退化的病理生理学机制的新线索?","authors":"","doi":"10.1016/j.phrs.2024.107380","DOIUrl":null,"url":null,"abstract":"<div><p>Age-related macular degeneration (AMD) is a common retinal pathology characterized by degeneration of macula’s retinal pigment epithelium (RPE) and photoreceptors, visual impairment, or loss. Compared to wet AMD, dry AMD is more common, but lacks cures; therefore, identification of new potential therapeutic targets and treatments is urgent. Increased oxidative stress and declining antioxidant, detoxifying systems contribute to the pathophysiologic mechanisms underlying AMD. The present work shows that the Embryonic Lethal Abnormal Vision-Like 1/Human antigen R (ELAVL1/HuR) and the Vascular Endothelial Growth Factor (VEGF) protein levels are higher in the RPE of both dry and wet AMD patients compared to healthy subjects. Moreover, increased HuR protein levels are detected in the retina, and especially in the RPE layer, of a dry AMD model, the <em>nuclear factor erythroid 2-related factor 2 (Nrf2) / peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)</em> double knock-out mouse. The crosstalk among Nrf2, HuR and VEGF has been also studied in ARPE-19 cells in basal and stressful conditions related to the AMD context (<em>i.e.</em>, oxidative stress, autophagy impairment, Nrf2 deficit), offering new evidence of the mutual influence between Nrf2 and HuR, of the dependence of VEGF expression and secretion by these two factors, and of the increased susceptibility of cells to stressful conditions in Nrf2- or HuR-impaired contexts. Overall, this study shows evidence of the interplay among Nrf2, HuR and VEGF, essential factors for RPE homeostasis, and represents an additional piece in the understanding of the complex pathophysiologic mechanisms underlying AMD.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824003256/pdfft?md5=e4ac2e7a44a4a7d69d2889f5d51d52ca&pid=1-s2.0-S1043661824003256-main.pdf","citationCount":"0","resultStr":"{\"title\":\"VEGF and ELAVL1/HuR protein levels are increased in dry and wet AMD patients. A new tile in the pathophysiologic mechanisms underlying RPE degeneration?\",\"authors\":\"\",\"doi\":\"10.1016/j.phrs.2024.107380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Age-related macular degeneration (AMD) is a common retinal pathology characterized by degeneration of macula’s retinal pigment epithelium (RPE) and photoreceptors, visual impairment, or loss. Compared to wet AMD, dry AMD is more common, but lacks cures; therefore, identification of new potential therapeutic targets and treatments is urgent. Increased oxidative stress and declining antioxidant, detoxifying systems contribute to the pathophysiologic mechanisms underlying AMD. The present work shows that the Embryonic Lethal Abnormal Vision-Like 1/Human antigen R (ELAVL1/HuR) and the Vascular Endothelial Growth Factor (VEGF) protein levels are higher in the RPE of both dry and wet AMD patients compared to healthy subjects. Moreover, increased HuR protein levels are detected in the retina, and especially in the RPE layer, of a dry AMD model, the <em>nuclear factor erythroid 2-related factor 2 (Nrf2) / peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)</em> double knock-out mouse. The crosstalk among Nrf2, HuR and VEGF has been also studied in ARPE-19 cells in basal and stressful conditions related to the AMD context (<em>i.e.</em>, oxidative stress, autophagy impairment, Nrf2 deficit), offering new evidence of the mutual influence between Nrf2 and HuR, of the dependence of VEGF expression and secretion by these two factors, and of the increased susceptibility of cells to stressful conditions in Nrf2- or HuR-impaired contexts. Overall, this study shows evidence of the interplay among Nrf2, HuR and VEGF, essential factors for RPE homeostasis, and represents an additional piece in the understanding of the complex pathophysiologic mechanisms underlying AMD.</p></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003256/pdfft?md5=e4ac2e7a44a4a7d69d2889f5d51d52ca&pid=1-s2.0-S1043661824003256-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003256\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003256","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
VEGF and ELAVL1/HuR protein levels are increased in dry and wet AMD patients. A new tile in the pathophysiologic mechanisms underlying RPE degeneration?
Age-related macular degeneration (AMD) is a common retinal pathology characterized by degeneration of macula’s retinal pigment epithelium (RPE) and photoreceptors, visual impairment, or loss. Compared to wet AMD, dry AMD is more common, but lacks cures; therefore, identification of new potential therapeutic targets and treatments is urgent. Increased oxidative stress and declining antioxidant, detoxifying systems contribute to the pathophysiologic mechanisms underlying AMD. The present work shows that the Embryonic Lethal Abnormal Vision-Like 1/Human antigen R (ELAVL1/HuR) and the Vascular Endothelial Growth Factor (VEGF) protein levels are higher in the RPE of both dry and wet AMD patients compared to healthy subjects. Moreover, increased HuR protein levels are detected in the retina, and especially in the RPE layer, of a dry AMD model, the nuclear factor erythroid 2-related factor 2 (Nrf2) / peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) double knock-out mouse. The crosstalk among Nrf2, HuR and VEGF has been also studied in ARPE-19 cells in basal and stressful conditions related to the AMD context (i.e., oxidative stress, autophagy impairment, Nrf2 deficit), offering new evidence of the mutual influence between Nrf2 and HuR, of the dependence of VEGF expression and secretion by these two factors, and of the increased susceptibility of cells to stressful conditions in Nrf2- or HuR-impaired contexts. Overall, this study shows evidence of the interplay among Nrf2, HuR and VEGF, essential factors for RPE homeostasis, and represents an additional piece in the understanding of the complex pathophysiologic mechanisms underlying AMD.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.