{"title":"小非编码 RNA Vaultrc5 在小鼠发育过程中是不可或缺的。","authors":"Mahendra Prajapat, Laura Sala, Joana A Vidigal","doi":"10.1261/rna.080161.124","DOIUrl":null,"url":null,"abstract":"<p><p>Vault RNAs (vtRNAs) are evolutionarily conserved small noncoding RNAs transcribed by RNA polymerase III. Vault RNAs were initially described as components of the vault particle, but have since been assigned multiple vault-independent functions, including regulation of PKR activity, apoptosis, autophagy, lysosome biogenesis, and viral particle trafficking. The full-length transcript has also been described as a noncanonical source of miRNAs, which are processed in a DICER-dependent manner. As central molecules in vault-dependent and independent processes, vtRNAs have been attributed numerous biological roles, including regulation of cell proliferation and survival, response to viral infections, drug resistance, and animal development. Yet, their impact to mammalian physiology remains largely unexplored. To study vault RNAs in vivo<i>,</i> we generated a mouse line with a conditional <i>Vaultrc5</i> loss-of-function allele. Because <i>Vaultrc5</i> is the sole murine vtRNA, this allele enables the characterization of the physiological requirements of this conserved class of small regulatory RNAs in mammals. Using this strain, we show that mice constitutively null for <i>Vaultrc5</i> are viable and histologically normal but have a slight reduction in platelet counts, pointing to a potential role for vtRNAs in hematopoiesis. This work paves the way for further in vivo characterizations of this abundant but mysterious RNA molecule. Specifically, it enables the study of the biological consequences of constitutive or lineage-specific <i>Vaultrc5</i> deletion and of the physiological requirements for an intact <i>Vaultrc5</i> during normal hematopoiesis or in response to cellular stresses such as oncogene expression, viral infection, or drug treatment.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1465-1476"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482604/pdf/","citationCount":"0","resultStr":"{\"title\":\"The small noncoding RNA <i>Vaultrc5</i> is dispensable to mouse development.\",\"authors\":\"Mahendra Prajapat, Laura Sala, Joana A Vidigal\",\"doi\":\"10.1261/rna.080161.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vault RNAs (vtRNAs) are evolutionarily conserved small noncoding RNAs transcribed by RNA polymerase III. Vault RNAs were initially described as components of the vault particle, but have since been assigned multiple vault-independent functions, including regulation of PKR activity, apoptosis, autophagy, lysosome biogenesis, and viral particle trafficking. The full-length transcript has also been described as a noncanonical source of miRNAs, which are processed in a DICER-dependent manner. As central molecules in vault-dependent and independent processes, vtRNAs have been attributed numerous biological roles, including regulation of cell proliferation and survival, response to viral infections, drug resistance, and animal development. Yet, their impact to mammalian physiology remains largely unexplored. To study vault RNAs in vivo<i>,</i> we generated a mouse line with a conditional <i>Vaultrc5</i> loss-of-function allele. Because <i>Vaultrc5</i> is the sole murine vtRNA, this allele enables the characterization of the physiological requirements of this conserved class of small regulatory RNAs in mammals. Using this strain, we show that mice constitutively null for <i>Vaultrc5</i> are viable and histologically normal but have a slight reduction in platelet counts, pointing to a potential role for vtRNAs in hematopoiesis. This work paves the way for further in vivo characterizations of this abundant but mysterious RNA molecule. Specifically, it enables the study of the biological consequences of constitutive or lineage-specific <i>Vaultrc5</i> deletion and of the physiological requirements for an intact <i>Vaultrc5</i> during normal hematopoiesis or in response to cellular stresses such as oncogene expression, viral infection, or drug treatment.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"1465-1476\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080161.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080161.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The small noncoding RNA Vaultrc5 is dispensable to mouse development.
Vault RNAs (vtRNAs) are evolutionarily conserved small noncoding RNAs transcribed by RNA polymerase III. Vault RNAs were initially described as components of the vault particle, but have since been assigned multiple vault-independent functions, including regulation of PKR activity, apoptosis, autophagy, lysosome biogenesis, and viral particle trafficking. The full-length transcript has also been described as a noncanonical source of miRNAs, which are processed in a DICER-dependent manner. As central molecules in vault-dependent and independent processes, vtRNAs have been attributed numerous biological roles, including regulation of cell proliferation and survival, response to viral infections, drug resistance, and animal development. Yet, their impact to mammalian physiology remains largely unexplored. To study vault RNAs in vivo, we generated a mouse line with a conditional Vaultrc5 loss-of-function allele. Because Vaultrc5 is the sole murine vtRNA, this allele enables the characterization of the physiological requirements of this conserved class of small regulatory RNAs in mammals. Using this strain, we show that mice constitutively null for Vaultrc5 are viable and histologically normal but have a slight reduction in platelet counts, pointing to a potential role for vtRNAs in hematopoiesis. This work paves the way for further in vivo characterizations of this abundant but mysterious RNA molecule. Specifically, it enables the study of the biological consequences of constitutive or lineage-specific Vaultrc5 deletion and of the physiological requirements for an intact Vaultrc5 during normal hematopoiesis or in response to cellular stresses such as oncogene expression, viral infection, or drug treatment.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.