通过氮掺杂的铁/锰双金属生物炭实现活性过硫酸盐对双酚 A 的高效降解。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-12 DOI:10.2166/wst.2024.275
Zexian Cao, Changhe Yang, Wenqiang Zhang, Huiliang Shao
{"title":"通过氮掺杂的铁/锰双金属生物炭实现活性过硫酸盐对双酚 A 的高效降解。","authors":"Zexian Cao, Changhe Yang, Wenqiang Zhang, Huiliang Shao","doi":"10.2166/wst.2024.275","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar.\",\"authors\":\"Zexian Cao, Changhe Yang, Wenqiang Zhang, Huiliang Shao\",\"doi\":\"10.2166/wst.2024.275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.275\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.275","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为达到以废治废的目的,本研究利用鸡粪制备了一种掺氮的铁锰双金属生物炭材料(FeMn@N-BC),用于过硫酸盐活化降解双酚 A(BPA)。通过扫描电子显微镜(SEM)、X 射线衍射仪(XRD)、傅立叶变换红外光谱(FT-IR)和 X 射线光电子能谱仪(XPS)对 FeMn@N-BC 进行了表征,发现 N 掺杂能形成更大的比表面积。催化降解实验表明,掺杂铁/锰双金属不仅能加快催化剂表面的电子循环速率,还能使生物炭具有磁性,易于分离,从而减少环境污染。对比实验得出,当尿素和鸡粪、Fe/Mn 的质量比分别为 3:1 和 2:1,热解温度为 800 ℃ 时,双酚 A 的降解效率最高,几乎可以在 60 分钟内降解所有双酚 A。FeMn@N-BC/PS系统具有催化效率高、耗材少的特点,在废物资源再利用和废水修复方面具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar.

To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. Spatial differences of dissolved organic matter composition and humification in an artificial lake. Wetland systems for water pollution control. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. Assessment of water quality in wells and springs across various districts of Taza City, Morocco.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1