用于提高电化学软化水性能的低表面能 Ni-P-PTFE 阴极。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-06 DOI:10.2166/wst.2024.271
Jingru Zhao, Lida Wang, Wen Sun, Zhengqing Yang, Xuesong Chen, Piji Zhang, Xu Chen, Jin Zhao, Jincheng Liu, Guichang Liu
{"title":"用于提高电化学软化水性能的低表面能 Ni-P-PTFE 阴极。","authors":"Jingru Zhao, Lida Wang, Wen Sun, Zhengqing Yang, Xuesong Chen, Piji Zhang, Xu Chen, Jin Zhao, Jincheng Liu, Guichang Liu","doi":"10.2166/wst.2024.271","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient cathode regeneration is a significant challenge in the electrochemical water softening process. This work explores the use of an electroless plating Ni-P-PTFE electrode with low surface energy for this purpose. The Ni-P-PTFE electrode demonstrates improved self-cleaning performance at high current densities. By combining the low surface energy of the electrode with fluid flushing shear force, the precipitation rate on the Ni-P-PTFE electrode remains stable at approximately 18 g/m<sup>2</sup>·h over extended periods of operation. Additionally, the cleaning efficiency of the Ni-P-PTFE electrode surpasses that of stainless steel by 66.34%. The Ni-P-PTFE electrode can maintain a larger active area and a longer operational lifespan is attributed to its self-cleaning performance derived from low surface energy. Furthermore, the loose scale layers on the electrode surface are easily removed during electrochemical water softening processes, presenting a novel approach to cathode surface design.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1210-1224"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni-P-PTFE cathode with low surface energy for enhancing electrochemical water softening performance.\",\"authors\":\"Jingru Zhao, Lida Wang, Wen Sun, Zhengqing Yang, Xuesong Chen, Piji Zhang, Xu Chen, Jin Zhao, Jincheng Liu, Guichang Liu\",\"doi\":\"10.2166/wst.2024.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient cathode regeneration is a significant challenge in the electrochemical water softening process. This work explores the use of an electroless plating Ni-P-PTFE electrode with low surface energy for this purpose. The Ni-P-PTFE electrode demonstrates improved self-cleaning performance at high current densities. By combining the low surface energy of the electrode with fluid flushing shear force, the precipitation rate on the Ni-P-PTFE electrode remains stable at approximately 18 g/m<sup>2</sup>·h over extended periods of operation. Additionally, the cleaning efficiency of the Ni-P-PTFE electrode surpasses that of stainless steel by 66.34%. The Ni-P-PTFE electrode can maintain a larger active area and a longer operational lifespan is attributed to its self-cleaning performance derived from low surface energy. Furthermore, the loose scale layers on the electrode surface are easily removed during electrochemical water softening processes, presenting a novel approach to cathode surface design.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"90 4\",\"pages\":\"1210-1224\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.271\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.271","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

高效的阴极再生是电化学软化水工艺中的一项重大挑战。这项研究探索了一种表面能较低的无电解电镀 Ni-P-PTFE 电极的使用方法。在高电流密度下,Ni-P-PTFE 电极的自清洁性能得到了改善。通过将电极的低表面能与流体冲洗剪切力相结合,Ni-P-PTFE 电极上的析出率在长时间运行后仍能稳定在约 18 g/m2-h 的水平。此外,Ni-P-PTFE 电极的清洗效率比不锈钢高 66.34%。Ni-P-PTFE 电极之所以能保持较大的活性面积和较长的运行寿命,是因为它具有低表面能的自清洁性能。此外,在电化学软化水过程中,电极表面的疏松垢层很容易去除,为阴极表面设计提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni-P-PTFE cathode with low surface energy for enhancing electrochemical water softening performance.

Efficient cathode regeneration is a significant challenge in the electrochemical water softening process. This work explores the use of an electroless plating Ni-P-PTFE electrode with low surface energy for this purpose. The Ni-P-PTFE electrode demonstrates improved self-cleaning performance at high current densities. By combining the low surface energy of the electrode with fluid flushing shear force, the precipitation rate on the Ni-P-PTFE electrode remains stable at approximately 18 g/m2·h over extended periods of operation. Additionally, the cleaning efficiency of the Ni-P-PTFE electrode surpasses that of stainless steel by 66.34%. The Ni-P-PTFE electrode can maintain a larger active area and a longer operational lifespan is attributed to its self-cleaning performance derived from low surface energy. Furthermore, the loose scale layers on the electrode surface are easily removed during electrochemical water softening processes, presenting a novel approach to cathode surface design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. Spatial differences of dissolved organic matter composition and humification in an artificial lake. Wetland systems for water pollution control. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. Assessment of water quality in wells and springs across various districts of Taza City, Morocco.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1