{"title":"间充质干细胞衍生的微囊部分通过肝细胞生长因子抑制小鼠急性呼吸窘迫综合征相关肺纤维化","authors":"Qi-Hong Chen, Ying Zhang, Xue Gu, Peng-Lei Yang, Jun Yuan, Li-Na Yu, Jian-Mei Chen","doi":"10.4252/wjsc.v16.i8.811","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome (ARDS) patients. Mesenchymal stromal cell-derived microvesicles (MSC-MVs) have been shown to exert antifibrotic effects in lung diseases.</p><p><strong>Aim: </strong>To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.</p><p><strong>Methods: </strong>MSC-MVs with low hepatocyte growth factor (HGF) expression (siHGF-MSC-MVs) were obtained <i>via</i> lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model. Following intubation, respiratory mechanics-related indicators were measured <i>via</i> an experimental small animal lung function tester. Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging. Immunohistochemical, western blotting, ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.</p><p><strong>Results: </strong>The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice. Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores. However, low expression of HGF (siHGF-MSC-MVs) significantly inhibited the effects of MSC-MVs (<i>P</i> < 0.05). Compared with the ARDS pulmonary fibrosis group, the MSC-MVs group exhibited suppressed expression of type I collagen antigen, type III collagen antigen, and the proteins transforming growth factor-β and α-smooth muscle actin, whereas the siHGF-MVs group exhibited significantly increased expression of these proteins. In addition, pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group, and the effects of the MSC-MVs were significantly inhibited by low HGF expression (all <i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly <i>via HGF</i> mRNA transfer.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"16 8","pages":"811-823"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microvesicles derived from mesenchymal stem cells inhibit acute respiratory distress syndrome-related pulmonary fibrosis in mouse partly through hepatocyte growth factor.\",\"authors\":\"Qi-Hong Chen, Ying Zhang, Xue Gu, Peng-Lei Yang, Jun Yuan, Li-Na Yu, Jian-Mei Chen\",\"doi\":\"10.4252/wjsc.v16.i8.811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome (ARDS) patients. Mesenchymal stromal cell-derived microvesicles (MSC-MVs) have been shown to exert antifibrotic effects in lung diseases.</p><p><strong>Aim: </strong>To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.</p><p><strong>Methods: </strong>MSC-MVs with low hepatocyte growth factor (HGF) expression (siHGF-MSC-MVs) were obtained <i>via</i> lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model. Following intubation, respiratory mechanics-related indicators were measured <i>via</i> an experimental small animal lung function tester. Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging. Immunohistochemical, western blotting, ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.</p><p><strong>Results: </strong>The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice. Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores. However, low expression of HGF (siHGF-MSC-MVs) significantly inhibited the effects of MSC-MVs (<i>P</i> < 0.05). Compared with the ARDS pulmonary fibrosis group, the MSC-MVs group exhibited suppressed expression of type I collagen antigen, type III collagen antigen, and the proteins transforming growth factor-β and α-smooth muscle actin, whereas the siHGF-MVs group exhibited significantly increased expression of these proteins. In addition, pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group, and the effects of the MSC-MVs were significantly inhibited by low HGF expression (all <i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly <i>via HGF</i> mRNA transfer.</p>\",\"PeriodicalId\":23775,\"journal\":{\"name\":\"World journal of stem cells\",\"volume\":\"16 8\",\"pages\":\"811-823\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of stem cells\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4252/wjsc.v16.i8.811\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v16.i8.811","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Microvesicles derived from mesenchymal stem cells inhibit acute respiratory distress syndrome-related pulmonary fibrosis in mouse partly through hepatocyte growth factor.
Background: Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome (ARDS) patients. Mesenchymal stromal cell-derived microvesicles (MSC-MVs) have been shown to exert antifibrotic effects in lung diseases.
Aim: To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.
Methods: MSC-MVs with low hepatocyte growth factor (HGF) expression (siHGF-MSC-MVs) were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model. Following intubation, respiratory mechanics-related indicators were measured via an experimental small animal lung function tester. Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging. Immunohistochemical, western blotting, ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.
Results: The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice. Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores. However, low expression of HGF (siHGF-MSC-MVs) significantly inhibited the effects of MSC-MVs (P < 0.05). Compared with the ARDS pulmonary fibrosis group, the MSC-MVs group exhibited suppressed expression of type I collagen antigen, type III collagen antigen, and the proteins transforming growth factor-β and α-smooth muscle actin, whereas the siHGF-MVs group exhibited significantly increased expression of these proteins. In addition, pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group, and the effects of the MSC-MVs were significantly inhibited by low HGF expression (all P < 0.05).
Conclusion: MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.