[微型正畸装置形状记忆合金弓丝的非线性锁定机构设计]。

Qingyuan Dai, Li Ji, Jiahao Hua, Zhenyu Liang, Jianwen Yu, Taicong Chen
{"title":"[微型正畸装置形状记忆合金弓丝的非线性锁定机构设计]。","authors":"Qingyuan Dai, Li Ji, Jiahao Hua, Zhenyu Liang, Jianwen Yu, Taicong Chen","doi":"10.7507/1001-5515.202306051","DOIUrl":null,"url":null,"abstract":"<p><p>The locking mechanism between bracket and shape memory alloy (SMA) archwire in the newly developed domestic orthodontic device is the key to controlling the precise alignment of the teeth. To meet the demand of locking force in clinical treatment, the tightening torque angle of the locking bolt and the required torque magnitude need to be precisely designed. For this purpose, a design study of the locking mechanism is carried out to analyze the correspondence between the tightening torque angle and the locking force and to determine the effective torque value, which involves complex coupling of contact, material and geometric nonlinear characteristics. Firstly, a simulation analysis based on parametric orthogonal experimental design is carried out to determine the SMA hyperelastic material parameters for the experimental data of SMA archwire with three-point bending. Secondly, a two-stage fine finite-element simulation model for bolt tightening and archwire pulling is established, and the nonlinear analysis is converged through the optimization of key contact parameters. Finally, multiple sets of calibration experiments are carried out for three tightening torsion angles. The comparison results between the design analysis and the calibration experiments show that the deviation between the design analysis and the calibration mean value of the locking force in each case is within 10%, and the design analysis method is valid and reliable. The final tightening torque angle for clinical application is determined to be 10° and the rated torque is 2.8 N∙mm. The key data obtained can be used in the design of clinical protocols and subsequent mechanical optimization of novel orthodontic devices, and the research methodology can provide a valuable reference for force analysis of medical devices containing SMA materials.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366461/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Design of nonlinear locking mechanism for shape memory alloy archwire of miniature orthodontic device].\",\"authors\":\"Qingyuan Dai, Li Ji, Jiahao Hua, Zhenyu Liang, Jianwen Yu, Taicong Chen\",\"doi\":\"10.7507/1001-5515.202306051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The locking mechanism between bracket and shape memory alloy (SMA) archwire in the newly developed domestic orthodontic device is the key to controlling the precise alignment of the teeth. To meet the demand of locking force in clinical treatment, the tightening torque angle of the locking bolt and the required torque magnitude need to be precisely designed. For this purpose, a design study of the locking mechanism is carried out to analyze the correspondence between the tightening torque angle and the locking force and to determine the effective torque value, which involves complex coupling of contact, material and geometric nonlinear characteristics. Firstly, a simulation analysis based on parametric orthogonal experimental design is carried out to determine the SMA hyperelastic material parameters for the experimental data of SMA archwire with three-point bending. Secondly, a two-stage fine finite-element simulation model for bolt tightening and archwire pulling is established, and the nonlinear analysis is converged through the optimization of key contact parameters. Finally, multiple sets of calibration experiments are carried out for three tightening torsion angles. The comparison results between the design analysis and the calibration experiments show that the deviation between the design analysis and the calibration mean value of the locking force in each case is within 10%, and the design analysis method is valid and reliable. The final tightening torque angle for clinical application is determined to be 10° and the rated torque is 2.8 N∙mm. The key data obtained can be used in the design of clinical protocols and subsequent mechanical optimization of novel orthodontic devices, and the research methodology can provide a valuable reference for force analysis of medical devices containing SMA materials.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202306051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202306051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

在新开发的国产正畸装置中,托槽与形状记忆合金(SMA)弓丝之间的锁定机制是控制牙齿精确排列的关键。为满足临床治疗中对锁定力的需求,需要对锁定螺栓的紧固扭矩角度和所需扭矩大小进行精确设计。为此,我们对锁定机构进行了设计研究,分析了拧紧扭矩角度与锁定力之间的对应关系,并确定了有效扭矩值,其中涉及接触、材料和几何非线性特性的复杂耦合。首先,针对三点弯曲 SMA 弓丝的实验数据,基于参数正交实验设计进行仿真分析,确定 SMA 超弹性材料参数。其次,建立了螺栓拧紧和弓丝牵引的两阶段精细有限元仿真模型,并通过优化关键接触参数收敛非线性分析。最后,针对三种拧紧扭转角度进行了多组校准实验。设计分析与校准实验的对比结果表明,设计分析与校准平均值的锁力偏差均在 10%以内,设计分析方法有效可靠。最终确定临床应用的拧紧扭矩角度为 10°,额定扭矩为 2.8 N∙mm。所获得的关键数据可用于新型正畸装置的临床方案设计和后续的机械优化,研究方法可为含有 SMA 材料的医疗装置的受力分析提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Design of nonlinear locking mechanism for shape memory alloy archwire of miniature orthodontic device].

The locking mechanism between bracket and shape memory alloy (SMA) archwire in the newly developed domestic orthodontic device is the key to controlling the precise alignment of the teeth. To meet the demand of locking force in clinical treatment, the tightening torque angle of the locking bolt and the required torque magnitude need to be precisely designed. For this purpose, a design study of the locking mechanism is carried out to analyze the correspondence between the tightening torque angle and the locking force and to determine the effective torque value, which involves complex coupling of contact, material and geometric nonlinear characteristics. Firstly, a simulation analysis based on parametric orthogonal experimental design is carried out to determine the SMA hyperelastic material parameters for the experimental data of SMA archwire with three-point bending. Secondly, a two-stage fine finite-element simulation model for bolt tightening and archwire pulling is established, and the nonlinear analysis is converged through the optimization of key contact parameters. Finally, multiple sets of calibration experiments are carried out for three tightening torsion angles. The comparison results between the design analysis and the calibration experiments show that the deviation between the design analysis and the calibration mean value of the locking force in each case is within 10%, and the design analysis method is valid and reliable. The final tightening torque angle for clinical application is determined to be 10° and the rated torque is 2.8 N∙mm. The key data obtained can be used in the design of clinical protocols and subsequent mechanical optimization of novel orthodontic devices, and the research methodology can provide a valuable reference for force analysis of medical devices containing SMA materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy]. [A lightweight recurrence prediction model for high grade serous ovarian cancer based on hierarchical transformer fusion metadata]. [A review of functional electrical stimulation based on brain-computer interface]. [An efficient and practical electrode optimization method for transcranial electrical stimulation]. [An emerging discipline: brain-computer interfaces medicine].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1