[利用 X 射线自动快速诊断桡骨远端骨折的研究]。

Yunpeng Liu, Kaifeng Gan, Jin Li, Dechao Sun, Hong Qiu, Dongquan Liu
{"title":"[利用 X 射线自动快速诊断桡骨远端骨折的研究]。","authors":"Yunpeng Liu, Kaifeng Gan, Jin Li, Dechao Sun, Hong Qiu, Dongquan Liu","doi":"10.7507/1001-5515.202309050","DOIUrl":null,"url":null,"abstract":"<p><p>This article aims to combine deep learning with image analysis technology and propose an effective classification method for distal radius fracture types. Firstly, an extended U-Net three-layer cascaded segmentation network was used to accurately segment the most important joint surface and non joint surface areas for identifying fractures. Then, the images of the joint surface area and non joint surface area separately were classified and trained to distinguish fractures. Finally, based on the classification results of the two images, the normal or ABC fracture classification results could be comprehensively determined. The accuracy rates of normal, A-type, B-type, and C-type fracture on the test set were 0.99, 0.92, 0.91, and 0.82, respectively. For orthopedic medical experts, the average recognition accuracy rates were 0.98, 0.90, 0.87, and 0.81, respectively. The proposed automatic recognition method is generally better than experts, and can be used for preliminary auxiliary diagnosis of distal radius fractures in scenarios without expert participation.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366454/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Study on automatic and rapid diagnosis of distal radius fracture by X-ray].\",\"authors\":\"Yunpeng Liu, Kaifeng Gan, Jin Li, Dechao Sun, Hong Qiu, Dongquan Liu\",\"doi\":\"10.7507/1001-5515.202309050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article aims to combine deep learning with image analysis technology and propose an effective classification method for distal radius fracture types. Firstly, an extended U-Net three-layer cascaded segmentation network was used to accurately segment the most important joint surface and non joint surface areas for identifying fractures. Then, the images of the joint surface area and non joint surface area separately were classified and trained to distinguish fractures. Finally, based on the classification results of the two images, the normal or ABC fracture classification results could be comprehensively determined. The accuracy rates of normal, A-type, B-type, and C-type fracture on the test set were 0.99, 0.92, 0.91, and 0.82, respectively. For orthopedic medical experts, the average recognition accuracy rates were 0.98, 0.90, 0.87, and 0.81, respectively. The proposed automatic recognition method is generally better than experts, and can be used for preliminary auxiliary diagnosis of distal radius fractures in scenarios without expert participation.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202309050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202309050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在将深度学习与图像分析技术相结合,提出一种有效的桡骨远端骨折类型分类方法。首先,利用扩展的 U-Net 三层级联分割网络,准确分割出识别骨折最重要的关节面和非关节面区域。然后,分别对关节面区域和非关节面区域的图像进行分类和训练,以区分骨折。最后,根据两幅图像的分类结果,综合确定正常骨折或 ABC 型骨折的分类结果。在测试集中,正常骨折、A 型骨折、B 型骨折和 C 型骨折的准确率分别为 0.99、0.92、0.91 和 0.82。骨科医学专家的平均识别准确率分别为 0.98、0.90、0.87 和 0.81。所提出的自动识别方法总体上优于专家,可用于在没有专家参与的情况下对桡骨远端骨折进行初步辅助诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Study on automatic and rapid diagnosis of distal radius fracture by X-ray].

This article aims to combine deep learning with image analysis technology and propose an effective classification method for distal radius fracture types. Firstly, an extended U-Net three-layer cascaded segmentation network was used to accurately segment the most important joint surface and non joint surface areas for identifying fractures. Then, the images of the joint surface area and non joint surface area separately were classified and trained to distinguish fractures. Finally, based on the classification results of the two images, the normal or ABC fracture classification results could be comprehensively determined. The accuracy rates of normal, A-type, B-type, and C-type fracture on the test set were 0.99, 0.92, 0.91, and 0.82, respectively. For orthopedic medical experts, the average recognition accuracy rates were 0.98, 0.90, 0.87, and 0.81, respectively. The proposed automatic recognition method is generally better than experts, and can be used for preliminary auxiliary diagnosis of distal radius fractures in scenarios without expert participation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images]. [A review on depth perception techniques in organoid images]. [Advances in nanostructured surfaces for enhanced mechano-bactericidal applications]. [Advances in the diagnosis of prostate cancer based on image fusion]. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1