深度学习预测牙龈脓肿释放的外膜囊泡中的炎症诱导蛋白编码 mRNA。

IF 2.3 Q3 ENGINEERING, BIOMEDICAL Biomedical Engineering and Computational Biology Pub Date : 2024-08-30 eCollection Date: 2024-01-01 DOI:10.1177/11795972241277081
Pradeep Kumar Yadalam, Raghavendra Vamsi Anegundi, Muthupandian Saravanan, Hadush Negash Meles, Artak Heboyan
{"title":"深度学习预测牙龈脓肿释放的外膜囊泡中的炎症诱导蛋白编码 mRNA。","authors":"Pradeep Kumar Yadalam, Raghavendra Vamsi Anegundi, Muthupandian Saravanan, Hadush Negash Meles, Artak Heboyan","doi":"10.1177/11795972241277081","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The Insilco study uses deep learning algorithms to predict the protein-coding pg m RNA sequences.</p><p><strong>Material and methods: </strong>The NCBI GEO DATA SET GSE218606's GEO R tool discovered P.G's outer membrane vesicles' most differentially expressed mRNA. Genemania analyzed differentially expressed gene networks. Transcriptomics data were collected and labeled on P. gingivalis protein-coding mRNA sequence and pseudogene, lincRNA, and bidirectional promoter lincRNA. Orange, a machine learning tool, analyzed and predicted data after preprocessing. Naïve Bayes, neural networks, and gradient descent partition data into training and testing sets, yielding accurate results. Cross-validation, model accuracy, and ROC curve were evaluated after model validation.</p><p><strong>Results: </strong>Three models, Neural Networks, Naive Bayes, and Gradient Boosting, were evaluated using metrics like Area Under the Curve (AUC), Classification Accuracy (CA), <i>F</i>1 Score, Precision, Recall, and Specificity. Gradient Boosting achieved a balanced performance (AUC: 0.72, CA: 0.41, <i>F</i>1: 0.32) compared to Neural Networks (AUC: 0.721, CA: 0.391, F1: 0.314) and Naive Bayes (AUC: 0.701, CA: 0.172, F1: 0.114). While statistical tests revealed no significant differences between the models, Gradient Boosting exhibited a more balanced precision-recall relationship.</p><p><strong>Conclusion: </strong>In silico analysis using machine learning techniques successfully predicted protein-coding mRNA sequences within Porphyromonas gingivalis OMVs. Gradient Boosting outperformed other models (Neural Networks, Naive Bayes) by achieving a balanced performance across metrics like AUC, classification accuracy, and precision-recall, suggests its potential as a reliable tool for protein-coding mRNA prediction in P. gingivalis OMVs.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241277081"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Prediction of Inflammatory Inducing Protein Coding mRNA in P. gingivalis Released Outer Membrane Vesicles.\",\"authors\":\"Pradeep Kumar Yadalam, Raghavendra Vamsi Anegundi, Muthupandian Saravanan, Hadush Negash Meles, Artak Heboyan\",\"doi\":\"10.1177/11795972241277081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>The Insilco study uses deep learning algorithms to predict the protein-coding pg m RNA sequences.</p><p><strong>Material and methods: </strong>The NCBI GEO DATA SET GSE218606's GEO R tool discovered P.G's outer membrane vesicles' most differentially expressed mRNA. Genemania analyzed differentially expressed gene networks. Transcriptomics data were collected and labeled on P. gingivalis protein-coding mRNA sequence and pseudogene, lincRNA, and bidirectional promoter lincRNA. Orange, a machine learning tool, analyzed and predicted data after preprocessing. Naïve Bayes, neural networks, and gradient descent partition data into training and testing sets, yielding accurate results. Cross-validation, model accuracy, and ROC curve were evaluated after model validation.</p><p><strong>Results: </strong>Three models, Neural Networks, Naive Bayes, and Gradient Boosting, were evaluated using metrics like Area Under the Curve (AUC), Classification Accuracy (CA), <i>F</i>1 Score, Precision, Recall, and Specificity. Gradient Boosting achieved a balanced performance (AUC: 0.72, CA: 0.41, <i>F</i>1: 0.32) compared to Neural Networks (AUC: 0.721, CA: 0.391, F1: 0.314) and Naive Bayes (AUC: 0.701, CA: 0.172, F1: 0.114). While statistical tests revealed no significant differences between the models, Gradient Boosting exhibited a more balanced precision-recall relationship.</p><p><strong>Conclusion: </strong>In silico analysis using machine learning techniques successfully predicted protein-coding mRNA sequences within Porphyromonas gingivalis OMVs. Gradient Boosting outperformed other models (Neural Networks, Naive Bayes) by achieving a balanced performance across metrics like AUC, classification accuracy, and precision-recall, suggests its potential as a reliable tool for protein-coding mRNA prediction in P. gingivalis OMVs.</p>\",\"PeriodicalId\":42484,\"journal\":{\"name\":\"Biomedical Engineering and Computational Biology\",\"volume\":\"15 \",\"pages\":\"11795972241277081\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11795972241277081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11795972241277081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:Insilco 研究使用深度学习算法预测编码蛋白质的 pg m RNA 序列:NCBI GEO DATA SET GSE218606的GEO R工具发现了P.G外膜囊泡中差异表达最大的mRNA。Genemania 分析了差异表达基因网络。转录组学数据被收集起来,并标注在牙龈炎蛋白编码 mRNA 序列和假基因、lincRNA 和双向启动子 lincRNA 上。机器学习工具 Orange 对预处理后的数据进行分析和预测。奈夫贝叶斯、神经网络和梯度下降法将数据分为训练集和测试集,从而得出准确的结果。在模型验证后,对交叉验证、模型准确性和 ROC 曲线进行了评估:使用曲线下面积(AUC)、分类准确率(CA)、F1 分数、精确度、召回率和特异性等指标对神经网络、奈夫贝叶斯和梯度提升这三种模型进行了评估。与神经网络(AUC:0.721,CA:0.391,F1:0.314)和 Naive Bayes(AUC:0.701,CA:0.172,F1:0.114)相比,梯度提升法取得了均衡的性能(AUC:0.72,CA:0.41,F1:0.32)。虽然统计测试显示模型之间没有明显差异,但梯度提升模型的精确度与召回率之间的关系更为平衡:结论:利用机器学习技术进行的硅学分析成功地预测了牙龈卟啉单胞菌 OMVs 中的蛋白编码 mRNA 序列。梯度提升法在AUC、分类准确率和精确度-召回率等指标上表现均衡,优于其他模型(神经网络、Naive Bayes),这表明它有潜力成为预测牙龈卟啉菌OMVs中蛋白编码mRNA的可靠工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Prediction of Inflammatory Inducing Protein Coding mRNA in P. gingivalis Released Outer Membrane Vesicles.

Aim: The Insilco study uses deep learning algorithms to predict the protein-coding pg m RNA sequences.

Material and methods: The NCBI GEO DATA SET GSE218606's GEO R tool discovered P.G's outer membrane vesicles' most differentially expressed mRNA. Genemania analyzed differentially expressed gene networks. Transcriptomics data were collected and labeled on P. gingivalis protein-coding mRNA sequence and pseudogene, lincRNA, and bidirectional promoter lincRNA. Orange, a machine learning tool, analyzed and predicted data after preprocessing. Naïve Bayes, neural networks, and gradient descent partition data into training and testing sets, yielding accurate results. Cross-validation, model accuracy, and ROC curve were evaluated after model validation.

Results: Three models, Neural Networks, Naive Bayes, and Gradient Boosting, were evaluated using metrics like Area Under the Curve (AUC), Classification Accuracy (CA), F1 Score, Precision, Recall, and Specificity. Gradient Boosting achieved a balanced performance (AUC: 0.72, CA: 0.41, F1: 0.32) compared to Neural Networks (AUC: 0.721, CA: 0.391, F1: 0.314) and Naive Bayes (AUC: 0.701, CA: 0.172, F1: 0.114). While statistical tests revealed no significant differences between the models, Gradient Boosting exhibited a more balanced precision-recall relationship.

Conclusion: In silico analysis using machine learning techniques successfully predicted protein-coding mRNA sequences within Porphyromonas gingivalis OMVs. Gradient Boosting outperformed other models (Neural Networks, Naive Bayes) by achieving a balanced performance across metrics like AUC, classification accuracy, and precision-recall, suggests its potential as a reliable tool for protein-coding mRNA prediction in P. gingivalis OMVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊最新文献
Computer-Aided Discovery of Abrus precatorius Compounds With Anti-Schistosomal Potential. Synthesis and Application of Sustainable Tricalcium Phosphate Based Biomaterials From Agro-Based Materials: A Review. A Physical Framework to Study the Effect of Magnetic Fields on the Spike-Time Coding. On Mechanical Behavior and Characterization of Soft Tissues. Construction of Prognostic Prediction Models for Colorectal Cancer Based on Ferroptosis-Related Genes: A Multi-Dataset and Multi-Model Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1