{"title":"使用床旁高敏心肌肌钙蛋白 I 快速排除心肌梗死的机器学习算法的诊断准确性:一项回顾性研究。","authors":"","doi":"10.1016/S2589-7500(24)00191-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Point-of-care (POC) high-sensitivity cardiac troponin (hs-cTn) assays have been shown to provide similar analytical precision despite substantially shorter turnaround times compared with laboratory-based hs-cTn assays. We applied the previously developed machine learning based personalised Artificial Intelligence in Suspected Myocardial Infarction Study (ARTEMIS) algorithm, which can predict the individual probability of myocardial infarction, with a single POC hs-cTn measurement, and compared its diagnostic performance with standard-of-care pathways for rapid rule-out of myocardial infarction.</div></div><div><h3>Methods</h3><div>We retrospectively analysed pooled data from consecutive patients of two prospective observational cohorts in geographically distinct regions (the Safe Emergency Department Discharge Rate cohort from the USA and the Suspected Acute Myocardial Infarction in Emergency cohort from Australia) who presented to the emergency department with suspected myocardial infarction. Patients with ST-segment elevation myocardial infarction were excluded. Safety and efficacy of direct rule-out of myocardial infarction by the ARTEMIS algorithm (at a pre-specified probability threshold of <0·5%) were compared with the European Society of Cardiology (ESC)-recommended and the American College of Cardiology (ACC)-recommended 0 h pathways using a single POC high-sensitivity cardiac troponin I (hs-cTnI) measurement (Siemens Atellica VTLi as investigational assay). The primary diagnostic outcome was an adjudicated index diagnosis of type 1 or type 2 myocardial infarction according to the Fourth Universal Definition of Myocardial Infarction. The safety outcome was a composite of incident myocardial infarction and cardiovascular death (follow-up events) at 30 days. Additional analyses were performed for type I myocardial infarction only (secondary diagnostic outcome), and for each cohort separately. Subgroup analyses were performed for age (<65 years <em>vs</em> ≥65 years), sex, symptom onset (≤3 h <em>vs</em> >3 h), estimated glomerular filtration rate (<60 mL/min per 1·73 m<sup>2</sup> <em>vs</em> ≥60 mL/min per 1·73 m<sup>2</sup>), and absence or presence of arterial hypertension, diabetes, a history of coronary artery disease, myocardial infarction, or heart failure, smoking, and ischaemic electrocardiogram signs.</div></div><div><h3>Findings</h3><div>Among 2560 patients (1075 [42%] women, median age 58 years [IQR 48·0–69·0]), prevalence of myocardial infarction was 6·5% (166/2560). The ARTEMIS-POC algorithm classified 899 patients (35·1%) as suitable for rapid rule-out with a negative predictive value of 99·96% (95% CI 99·64–99·96) and a sensitivity of 99·68% (97·21–99·70). For type I myocardial infarction only, negative predictive value and sensitivity were both 100%. Proportions of missed index myocardial infarction (0·05% [0·04–0·42]) and follow-up events at 30 days (0·07% [95% CI 0·06–0·59]) were low. While maintaining high safety, the ARTEMIS-POC algorithm identified more than twice as many patients as eligible for direct rule-out compared with guideline-recommended ESC 0 h (15·2%) and ACC 0 h (13·8%) pathways. Superior efficacy persisted across all clinically relevant subgroups.</div></div><div><h3>Interpretation</h3><div>The patient-tailored, medical decision support ARTEMIS-POC algorithm applied with a single POC hs-cTnI measurement allows for very rapid, safe, and more efficient direct rule-out of myocardial infarction than guideline-recommended pathways. It has the potential to expedite the safe discharge of low-risk patients from the emergency department including early presenters with symptom onset less than 3 h at the time of admission and might open new opportunities for the triage of patients with suspected myocardial infarction even in ambulatory, preclinical, or geographically isolated care settings.</div></div><div><h3>Funding</h3><div>The German Center for Cardiovascular Research (DZHK).</div></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic accuracy of a machine learning algorithm using point-of-care high-sensitivity cardiac troponin I for rapid rule-out of myocardial infarction: a retrospective study\",\"authors\":\"\",\"doi\":\"10.1016/S2589-7500(24)00191-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Point-of-care (POC) high-sensitivity cardiac troponin (hs-cTn) assays have been shown to provide similar analytical precision despite substantially shorter turnaround times compared with laboratory-based hs-cTn assays. We applied the previously developed machine learning based personalised Artificial Intelligence in Suspected Myocardial Infarction Study (ARTEMIS) algorithm, which can predict the individual probability of myocardial infarction, with a single POC hs-cTn measurement, and compared its diagnostic performance with standard-of-care pathways for rapid rule-out of myocardial infarction.</div></div><div><h3>Methods</h3><div>We retrospectively analysed pooled data from consecutive patients of two prospective observational cohorts in geographically distinct regions (the Safe Emergency Department Discharge Rate cohort from the USA and the Suspected Acute Myocardial Infarction in Emergency cohort from Australia) who presented to the emergency department with suspected myocardial infarction. Patients with ST-segment elevation myocardial infarction were excluded. Safety and efficacy of direct rule-out of myocardial infarction by the ARTEMIS algorithm (at a pre-specified probability threshold of <0·5%) were compared with the European Society of Cardiology (ESC)-recommended and the American College of Cardiology (ACC)-recommended 0 h pathways using a single POC high-sensitivity cardiac troponin I (hs-cTnI) measurement (Siemens Atellica VTLi as investigational assay). The primary diagnostic outcome was an adjudicated index diagnosis of type 1 or type 2 myocardial infarction according to the Fourth Universal Definition of Myocardial Infarction. The safety outcome was a composite of incident myocardial infarction and cardiovascular death (follow-up events) at 30 days. Additional analyses were performed for type I myocardial infarction only (secondary diagnostic outcome), and for each cohort separately. Subgroup analyses were performed for age (<65 years <em>vs</em> ≥65 years), sex, symptom onset (≤3 h <em>vs</em> >3 h), estimated glomerular filtration rate (<60 mL/min per 1·73 m<sup>2</sup> <em>vs</em> ≥60 mL/min per 1·73 m<sup>2</sup>), and absence or presence of arterial hypertension, diabetes, a history of coronary artery disease, myocardial infarction, or heart failure, smoking, and ischaemic electrocardiogram signs.</div></div><div><h3>Findings</h3><div>Among 2560 patients (1075 [42%] women, median age 58 years [IQR 48·0–69·0]), prevalence of myocardial infarction was 6·5% (166/2560). The ARTEMIS-POC algorithm classified 899 patients (35·1%) as suitable for rapid rule-out with a negative predictive value of 99·96% (95% CI 99·64–99·96) and a sensitivity of 99·68% (97·21–99·70). For type I myocardial infarction only, negative predictive value and sensitivity were both 100%. Proportions of missed index myocardial infarction (0·05% [0·04–0·42]) and follow-up events at 30 days (0·07% [95% CI 0·06–0·59]) were low. While maintaining high safety, the ARTEMIS-POC algorithm identified more than twice as many patients as eligible for direct rule-out compared with guideline-recommended ESC 0 h (15·2%) and ACC 0 h (13·8%) pathways. Superior efficacy persisted across all clinically relevant subgroups.</div></div><div><h3>Interpretation</h3><div>The patient-tailored, medical decision support ARTEMIS-POC algorithm applied with a single POC hs-cTnI measurement allows for very rapid, safe, and more efficient direct rule-out of myocardial infarction than guideline-recommended pathways. It has the potential to expedite the safe discharge of low-risk patients from the emergency department including early presenters with symptom onset less than 3 h at the time of admission and might open new opportunities for the triage of patients with suspected myocardial infarction even in ambulatory, preclinical, or geographically isolated care settings.</div></div><div><h3>Funding</h3><div>The German Center for Cardiovascular Research (DZHK).</div></div>\",\"PeriodicalId\":48534,\"journal\":{\"name\":\"Lancet Digital Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Digital Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589750024001912\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750024001912","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Diagnostic accuracy of a machine learning algorithm using point-of-care high-sensitivity cardiac troponin I for rapid rule-out of myocardial infarction: a retrospective study
Background
Point-of-care (POC) high-sensitivity cardiac troponin (hs-cTn) assays have been shown to provide similar analytical precision despite substantially shorter turnaround times compared with laboratory-based hs-cTn assays. We applied the previously developed machine learning based personalised Artificial Intelligence in Suspected Myocardial Infarction Study (ARTEMIS) algorithm, which can predict the individual probability of myocardial infarction, with a single POC hs-cTn measurement, and compared its diagnostic performance with standard-of-care pathways for rapid rule-out of myocardial infarction.
Methods
We retrospectively analysed pooled data from consecutive patients of two prospective observational cohorts in geographically distinct regions (the Safe Emergency Department Discharge Rate cohort from the USA and the Suspected Acute Myocardial Infarction in Emergency cohort from Australia) who presented to the emergency department with suspected myocardial infarction. Patients with ST-segment elevation myocardial infarction were excluded. Safety and efficacy of direct rule-out of myocardial infarction by the ARTEMIS algorithm (at a pre-specified probability threshold of <0·5%) were compared with the European Society of Cardiology (ESC)-recommended and the American College of Cardiology (ACC)-recommended 0 h pathways using a single POC high-sensitivity cardiac troponin I (hs-cTnI) measurement (Siemens Atellica VTLi as investigational assay). The primary diagnostic outcome was an adjudicated index diagnosis of type 1 or type 2 myocardial infarction according to the Fourth Universal Definition of Myocardial Infarction. The safety outcome was a composite of incident myocardial infarction and cardiovascular death (follow-up events) at 30 days. Additional analyses were performed for type I myocardial infarction only (secondary diagnostic outcome), and for each cohort separately. Subgroup analyses were performed for age (<65 years vs ≥65 years), sex, symptom onset (≤3 h vs >3 h), estimated glomerular filtration rate (<60 mL/min per 1·73 m2vs ≥60 mL/min per 1·73 m2), and absence or presence of arterial hypertension, diabetes, a history of coronary artery disease, myocardial infarction, or heart failure, smoking, and ischaemic electrocardiogram signs.
Findings
Among 2560 patients (1075 [42%] women, median age 58 years [IQR 48·0–69·0]), prevalence of myocardial infarction was 6·5% (166/2560). The ARTEMIS-POC algorithm classified 899 patients (35·1%) as suitable for rapid rule-out with a negative predictive value of 99·96% (95% CI 99·64–99·96) and a sensitivity of 99·68% (97·21–99·70). For type I myocardial infarction only, negative predictive value and sensitivity were both 100%. Proportions of missed index myocardial infarction (0·05% [0·04–0·42]) and follow-up events at 30 days (0·07% [95% CI 0·06–0·59]) were low. While maintaining high safety, the ARTEMIS-POC algorithm identified more than twice as many patients as eligible for direct rule-out compared with guideline-recommended ESC 0 h (15·2%) and ACC 0 h (13·8%) pathways. Superior efficacy persisted across all clinically relevant subgroups.
Interpretation
The patient-tailored, medical decision support ARTEMIS-POC algorithm applied with a single POC hs-cTnI measurement allows for very rapid, safe, and more efficient direct rule-out of myocardial infarction than guideline-recommended pathways. It has the potential to expedite the safe discharge of low-risk patients from the emergency department including early presenters with symptom onset less than 3 h at the time of admission and might open new opportunities for the triage of patients with suspected myocardial infarction even in ambulatory, preclinical, or geographically isolated care settings.
Funding
The German Center for Cardiovascular Research (DZHK).
期刊介绍:
The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health.
The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health.
We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.