{"title":"由取代的苯乙胺合成的新型β-内酰胺衍生物对 MRSA 分离物耐药基因的影响。","authors":"Merve Yildirim, Bunyamin Ozgeris, Arzu Gormez","doi":"10.1038/s41429-024-00769-5","DOIUrl":null,"url":null,"abstract":"This study focuses on the activity of previously reported imine and β-lactam derivatives against methicillin-resistant Staphylococcus aureus (MRSA) isolates. The presence of mecA and blaZ genes in the isolates was determined, and the minimum inhibitory concentration (MIC) values were determined based on the antibacterial activity against these isolates. Active compounds were selected and their ability to act against resistant isolates in vitro was determined. Concurrently, biochemical (nitrocefin) and molecular (qRT-PCR) tests were used to investigate the ability of the compounds to induce resistance genes in MRSA isolates. The cytotoxicity of the compounds on human dermal fibroblasts (HDF) was investigated. The MIC values of compounds (10) and (12) against MSSA and MRSA isolates were 7.81 and 15.62 μg ml−1, respectively. The most active compounds were identified as (10) and (12), and it was observed that the isolates did not develop resistance to these compounds in vitro. These compounds were found to inhibit β-lactamase, reduce the expression of resistance genes, and exhibit reduced HDF cell toxicity in a dose-dependent manner. According to the findings of the study, it can be concluded that these compounds show promise as hits with an interesting mechanism of action for further chemical modifications to develop new MRSA inhibitors.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 12","pages":"802-811"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of novel β-lactam derivatives synthesized from substituted phenethylamines on resistance genes of MRSA isolates\",\"authors\":\"Merve Yildirim, Bunyamin Ozgeris, Arzu Gormez\",\"doi\":\"10.1038/s41429-024-00769-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the activity of previously reported imine and β-lactam derivatives against methicillin-resistant Staphylococcus aureus (MRSA) isolates. The presence of mecA and blaZ genes in the isolates was determined, and the minimum inhibitory concentration (MIC) values were determined based on the antibacterial activity against these isolates. Active compounds were selected and their ability to act against resistant isolates in vitro was determined. Concurrently, biochemical (nitrocefin) and molecular (qRT-PCR) tests were used to investigate the ability of the compounds to induce resistance genes in MRSA isolates. The cytotoxicity of the compounds on human dermal fibroblasts (HDF) was investigated. The MIC values of compounds (10) and (12) against MSSA and MRSA isolates were 7.81 and 15.62 μg ml−1, respectively. The most active compounds were identified as (10) and (12), and it was observed that the isolates did not develop resistance to these compounds in vitro. These compounds were found to inhibit β-lactamase, reduce the expression of resistance genes, and exhibit reduced HDF cell toxicity in a dose-dependent manner. According to the findings of the study, it can be concluded that these compounds show promise as hits with an interesting mechanism of action for further chemical modifications to develop new MRSA inhibitors.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"77 12\",\"pages\":\"802-811\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00769-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00769-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The effect of novel β-lactam derivatives synthesized from substituted phenethylamines on resistance genes of MRSA isolates
This study focuses on the activity of previously reported imine and β-lactam derivatives against methicillin-resistant Staphylococcus aureus (MRSA) isolates. The presence of mecA and blaZ genes in the isolates was determined, and the minimum inhibitory concentration (MIC) values were determined based on the antibacterial activity against these isolates. Active compounds were selected and their ability to act against resistant isolates in vitro was determined. Concurrently, biochemical (nitrocefin) and molecular (qRT-PCR) tests were used to investigate the ability of the compounds to induce resistance genes in MRSA isolates. The cytotoxicity of the compounds on human dermal fibroblasts (HDF) was investigated. The MIC values of compounds (10) and (12) against MSSA and MRSA isolates were 7.81 and 15.62 μg ml−1, respectively. The most active compounds were identified as (10) and (12), and it was observed that the isolates did not develop resistance to these compounds in vitro. These compounds were found to inhibit β-lactamase, reduce the expression of resistance genes, and exhibit reduced HDF cell toxicity in a dose-dependent manner. According to the findings of the study, it can be concluded that these compounds show promise as hits with an interesting mechanism of action for further chemical modifications to develop new MRSA inhibitors.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.