缩小差距:鲁棒性和标准通用性中的拉德马赫复杂性。

Jiancong Xiao, Ruoyu Sun, Qi Long, Weijie J Su
{"title":"缩小差距:鲁棒性和标准通用性中的拉德马赫复杂性。","authors":"Jiancong Xiao, Ruoyu Sun, Qi Long, Weijie J Su","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width <math><mi>m</mi></math> of the DNNs or the dimension <math><mi>d</mi></math> of the data, with an extra factor of at least <math><mi>𝒪</mi> <mo>(</mo> <msqrt><mi>m</mi></msqrt> <mo>)</mo></math> or <math><mi>𝒪</mi> <mo>(</mo> <msqrt><mi>d</mi></msqrt> <mo>)</mo></math> . This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being <math><mi>𝒪</mi> <mo>(</mo> <mtext>ln</mtext> <mspace></mspace> <mo>(</mo> <mi>d</mi> <mi>m</mi> <mo>)</mo> <mo>)</mo></math> . The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the <i>uniform covering number</i>, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"247 ","pages":"5074-5075"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization.\",\"authors\":\"Jiancong Xiao, Ruoyu Sun, Qi Long, Weijie J Su\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width <math><mi>m</mi></math> of the DNNs or the dimension <math><mi>d</mi></math> of the data, with an extra factor of at least <math><mi>𝒪</mi> <mo>(</mo> <msqrt><mi>m</mi></msqrt> <mo>)</mo></math> or <math><mi>𝒪</mi> <mo>(</mo> <msqrt><mi>d</mi></msqrt> <mo>)</mo></math> . This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being <math><mi>𝒪</mi> <mo>(</mo> <mtext>ln</mtext> <mspace></mspace> <mo>(</mo> <mi>d</mi> <mi>m</mi> <mo>)</mo> <mo>)</mo></math> . The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the <i>uniform covering number</i>, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.</p>\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"247 \",\"pages\":\"5074-5075\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用对抗性示例训练深度神经网络(DNN)往往会导致对测试时对抗性数据的泛化效果不佳。本文通过拉德马赫复杂性的视角研究了这一问题,即所谓的对抗性鲁棒泛化(adversarially robust generalization)。在 Khim 和 Loh(2018 年)、Yin 等人(2019 年)的研究基础上,已有大量作品致力于解决这一问题,但要达到令人满意的界限仍是一个难以实现的目标。关于 DNN 的现有研究要么适用于替代损失而非稳健损失,要么产生的边界明显比标准边界宽松。在后一种情况下,边界对 DNNs 的宽度 m 或数据维度 d 有更高的依赖性,至少有 𝒪 ( m ) 或 𝒪 ( d ) 的额外系数。本文提出了 DNN 的对抗性拉德马赫复杂度上界,与 Bartlett 等人(2017)的研究中建立的标准设置中最著名的上界相匹配,对宽度和维度的依赖性为 𝒪 ( ln ( d m ) ) 。我们面临的核心挑战是计算对抗函数类的覆盖数。我们的目标是构建一个具有以下两个特性的新覆盖:1) 与对抗示例兼容,以及 2) 精度可与标准设置中使用的覆盖相媲美。为此,我们引入了一种新的覆盖数变体,称为统一覆盖数,它是为协调这两个特性而专门设计并经过验证的。因此,我们的方法有效地弥合了鲁棒性和标准泛函的拉德马赫复杂性之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization.

Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width m of the DNNs or the dimension d of the data, with an extra factor of at least 𝒪 ( m ) or 𝒪 ( d ) . This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being 𝒪 ( ln ( d m ) ) . The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the uniform covering number, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1