Jingzi Beiyuan, Xinyi Wu, Bo Ruan, Zeyu Chen, Juan Liu, Jin Wang, Jiangshan Li, Weicheng Xu, Wenbing Yuan, Hailong Wang
{"title":"通过铁锰生物炭高效去除水体中的磷酸盐:性能和机理。","authors":"Jingzi Beiyuan, Xinyi Wu, Bo Ruan, Zeyu Chen, Juan Liu, Jin Wang, Jiangshan Li, Weicheng Xu, Wenbing Yuan, Hailong Wang","doi":"10.1016/j.chemosphere.2024.143207","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar (BC) has emerged as a potential solution to phosphate removal from wastewater primarily resulting from global overuse of fertilizers. Further modification by embedment of iron (Fe)-manganese (Mn) oxides on BC can enhance phosphate removal; however, the modification method serves as a vital factor underlying distinctive removal performances and mechanisms, which have yet been systematically examined. Herein, two Fe-Mn modified BC, Fe/MnBC (comprised of Fe<sub>3</sub>O<sub>4</sub> and MnO<sub>2</sub>) and Fe-MnBC (comprised of MnFe<sub>2</sub>O<sub>4</sub>), were comprehensively investigated for gaining insights into the unsolved perspectives. The results indicated that Fe-MnBC exhibited a markedly greater maximum phosphate adsorption capacity of 135.88 mg g<sup>-1</sup> than that of Fe/MnBC with 17.93 mg g<sup>-1</sup>. The comparative results based on microstructure and spectroscopic analyses suggested that different Fe and Mn oxides were successfully loaded, which played a distinctive role in phosphate removal. Further characterizations unveiled that the key mechanisms for phosphate removal by Fe/MnBC are inner-sphere complexation and precipitation, while electrostatic interaction and outer-sphere complexation are the dominant mechanisms underlying the notable performance of Fe-MnBC. The delicately designed Fe-MnBC with special structure and property also enabled a superior regeneration capacity, which presented a promisingly high phosphate removal efficacy of over 81.34% after five cycles. These results enhance comprehension regarding the impact of biochar modification techniques on phosphate removal, offering positive indications for the remediation of excessive phosphate and other pollutant-containing water through feasible design and green chemicals.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient removal of aqueous phosphate via iron-manganese fabricated biochar: Performance and mechanism.\",\"authors\":\"Jingzi Beiyuan, Xinyi Wu, Bo Ruan, Zeyu Chen, Juan Liu, Jin Wang, Jiangshan Li, Weicheng Xu, Wenbing Yuan, Hailong Wang\",\"doi\":\"10.1016/j.chemosphere.2024.143207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biochar (BC) has emerged as a potential solution to phosphate removal from wastewater primarily resulting from global overuse of fertilizers. Further modification by embedment of iron (Fe)-manganese (Mn) oxides on BC can enhance phosphate removal; however, the modification method serves as a vital factor underlying distinctive removal performances and mechanisms, which have yet been systematically examined. Herein, two Fe-Mn modified BC, Fe/MnBC (comprised of Fe<sub>3</sub>O<sub>4</sub> and MnO<sub>2</sub>) and Fe-MnBC (comprised of MnFe<sub>2</sub>O<sub>4</sub>), were comprehensively investigated for gaining insights into the unsolved perspectives. The results indicated that Fe-MnBC exhibited a markedly greater maximum phosphate adsorption capacity of 135.88 mg g<sup>-1</sup> than that of Fe/MnBC with 17.93 mg g<sup>-1</sup>. The comparative results based on microstructure and spectroscopic analyses suggested that different Fe and Mn oxides were successfully loaded, which played a distinctive role in phosphate removal. Further characterizations unveiled that the key mechanisms for phosphate removal by Fe/MnBC are inner-sphere complexation and precipitation, while electrostatic interaction and outer-sphere complexation are the dominant mechanisms underlying the notable performance of Fe-MnBC. The delicately designed Fe-MnBC with special structure and property also enabled a superior regeneration capacity, which presented a promisingly high phosphate removal efficacy of over 81.34% after five cycles. These results enhance comprehension regarding the impact of biochar modification techniques on phosphate removal, offering positive indications for the remediation of excessive phosphate and other pollutant-containing water through feasible design and green chemicals.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.143207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Highly efficient removal of aqueous phosphate via iron-manganese fabricated biochar: Performance and mechanism.
Biochar (BC) has emerged as a potential solution to phosphate removal from wastewater primarily resulting from global overuse of fertilizers. Further modification by embedment of iron (Fe)-manganese (Mn) oxides on BC can enhance phosphate removal; however, the modification method serves as a vital factor underlying distinctive removal performances and mechanisms, which have yet been systematically examined. Herein, two Fe-Mn modified BC, Fe/MnBC (comprised of Fe3O4 and MnO2) and Fe-MnBC (comprised of MnFe2O4), were comprehensively investigated for gaining insights into the unsolved perspectives. The results indicated that Fe-MnBC exhibited a markedly greater maximum phosphate adsorption capacity of 135.88 mg g-1 than that of Fe/MnBC with 17.93 mg g-1. The comparative results based on microstructure and spectroscopic analyses suggested that different Fe and Mn oxides were successfully loaded, which played a distinctive role in phosphate removal. Further characterizations unveiled that the key mechanisms for phosphate removal by Fe/MnBC are inner-sphere complexation and precipitation, while electrostatic interaction and outer-sphere complexation are the dominant mechanisms underlying the notable performance of Fe-MnBC. The delicately designed Fe-MnBC with special structure and property also enabled a superior regeneration capacity, which presented a promisingly high phosphate removal efficacy of over 81.34% after five cycles. These results enhance comprehension regarding the impact of biochar modification techniques on phosphate removal, offering positive indications for the remediation of excessive phosphate and other pollutant-containing water through feasible design and green chemicals.