{"title":"通过负染色电子断层扫描分析支原体移动滑行机械的内部结构。","authors":"Minoru Fukushima, Takuma Toyonaga, Yuhei O Tahara, Daisuke Nakane, Makoto Miyata","doi":"10.2142/biophysico.bppb-v21.0015","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycoplasma mobile</i> is a parasitic bacterium that forms gliding machinery on the cell pole and glides on a solid surface in the direction of the cell pole. The gliding machinery consists of both internal and surface structures. The internal structure is divided into a bell at the front and chain structure extending from the bell. In this study, the internal structures prepared under several conditions were analyzed using negative-staining electron microscopy and electron tomography. The chains were constructed by linked motors containing two complexes similar to ATP synthase. A cylindrical spacer with a maximum diameter of 6 nm and a height of 13 nm, and anonymous linkers with a diameter of 0.9-8.3 nm and length of 14.7±6.9 nm were found between motors. The bell is bowl-shaped and features a honeycomb surface with a periodicity of 8.4 nm. The chains of the motor are connected to the rim of the bell through a wedge-shaped structure. These structures may play roles in the assembly and cooperation of gliding machinery units.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 2","pages":"e210015"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347822/pdf/","citationCount":"0","resultStr":"{\"title\":\"Internal structure of <i>Mycoplasma mobile</i> gliding machinery analyzed by negative staining electron tomography.\",\"authors\":\"Minoru Fukushima, Takuma Toyonaga, Yuhei O Tahara, Daisuke Nakane, Makoto Miyata\",\"doi\":\"10.2142/biophysico.bppb-v21.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Mycoplasma mobile</i> is a parasitic bacterium that forms gliding machinery on the cell pole and glides on a solid surface in the direction of the cell pole. The gliding machinery consists of both internal and surface structures. The internal structure is divided into a bell at the front and chain structure extending from the bell. In this study, the internal structures prepared under several conditions were analyzed using negative-staining electron microscopy and electron tomography. The chains were constructed by linked motors containing two complexes similar to ATP synthase. A cylindrical spacer with a maximum diameter of 6 nm and a height of 13 nm, and anonymous linkers with a diameter of 0.9-8.3 nm and length of 14.7±6.9 nm were found between motors. The bell is bowl-shaped and features a honeycomb surface with a periodicity of 8.4 nm. The chains of the motor are connected to the rim of the bell through a wedge-shaped structure. These structures may play roles in the assembly and cooperation of gliding machinery units.</p>\",\"PeriodicalId\":101323,\"journal\":{\"name\":\"Biophysics and physicobiology\",\"volume\":\"21 2\",\"pages\":\"e210015\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v21.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Internal structure of Mycoplasma mobile gliding machinery analyzed by negative staining electron tomography.
Mycoplasma mobile is a parasitic bacterium that forms gliding machinery on the cell pole and glides on a solid surface in the direction of the cell pole. The gliding machinery consists of both internal and surface structures. The internal structure is divided into a bell at the front and chain structure extending from the bell. In this study, the internal structures prepared under several conditions were analyzed using negative-staining electron microscopy and electron tomography. The chains were constructed by linked motors containing two complexes similar to ATP synthase. A cylindrical spacer with a maximum diameter of 6 nm and a height of 13 nm, and anonymous linkers with a diameter of 0.9-8.3 nm and length of 14.7±6.9 nm were found between motors. The bell is bowl-shaped and features a honeycomb surface with a periodicity of 8.4 nm. The chains of the motor are connected to the rim of the bell through a wedge-shaped structure. These structures may play roles in the assembly and cooperation of gliding machinery units.