Huaxin Yang, Mengjia Zheng, Yuyue Zhang, Chaochang Li, Joseph Ho Chi Lai, Qizheng Zhang, Kannie Wy Chan, Hao Wang, Xin Zhao, Zijiang Yang, Chenjie Xu
{"title":"皮下移植后多孔聚(ε-己内酯)支架与甲基丙烯酸透明质酸水凝胶的血管生成得到增强","authors":"Huaxin Yang, Mengjia Zheng, Yuyue Zhang, Chaochang Li, Joseph Ho Chi Lai, Qizheng Zhang, Kannie Wy Chan, Hao Wang, Xin Zhao, Zijiang Yang, Chenjie Xu","doi":"10.12336/biomatertransl.2024.01.006","DOIUrl":null,"url":null,"abstract":"<p><p>A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment, survival, and retention in cell transplantation processes. This study presents a composite scaffold made of poly(ε-caprolactone) (PCL) and methacrylated hyaluronic acid (MeHA) hydrogel and describes the corresponding physical properties (surface area, porosity, and mechanical strength) and host response (angiogenesis and fibrosis) after subcutaneous transplantation. Specifically, we synthesise MeHA with different degrees of substitution and fabricate a PCL scaffold with different porosities. Subsequently, we construct a series of PCL/MeHA composite scaffolds by combining these hydrogels and scaffolds. In experiments with mice, the scaffold composed of 3% PCL and 10-100 kDa, degree of substitution 70% MeHA results in the least fibrosis and a higher degree of angiogenesis. This study highlights the potential of PCL/MeHA composite scaffolds for subcutaneous cell transplantation, given their desirable physical properties and host response.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"5 1","pages":"59-68"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362355/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced angiogenesis in porous poly(ε-caprolactone) scaffolds fortified with methacrylated hyaluronic acid hydrogel after subcutaneous transplantation.\",\"authors\":\"Huaxin Yang, Mengjia Zheng, Yuyue Zhang, Chaochang Li, Joseph Ho Chi Lai, Qizheng Zhang, Kannie Wy Chan, Hao Wang, Xin Zhao, Zijiang Yang, Chenjie Xu\",\"doi\":\"10.12336/biomatertransl.2024.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment, survival, and retention in cell transplantation processes. This study presents a composite scaffold made of poly(ε-caprolactone) (PCL) and methacrylated hyaluronic acid (MeHA) hydrogel and describes the corresponding physical properties (surface area, porosity, and mechanical strength) and host response (angiogenesis and fibrosis) after subcutaneous transplantation. Specifically, we synthesise MeHA with different degrees of substitution and fabricate a PCL scaffold with different porosities. Subsequently, we construct a series of PCL/MeHA composite scaffolds by combining these hydrogels and scaffolds. In experiments with mice, the scaffold composed of 3% PCL and 10-100 kDa, degree of substitution 70% MeHA results in the least fibrosis and a higher degree of angiogenesis. This study highlights the potential of PCL/MeHA composite scaffolds for subcutaneous cell transplantation, given their desirable physical properties and host response.</p>\",\"PeriodicalId\":58820,\"journal\":{\"name\":\"Biomaterials Translational\",\"volume\":\"5 1\",\"pages\":\"59-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Translational\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12336/biomatertransl.2024.01.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2024.01.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced angiogenesis in porous poly(ε-caprolactone) scaffolds fortified with methacrylated hyaluronic acid hydrogel after subcutaneous transplantation.
A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment, survival, and retention in cell transplantation processes. This study presents a composite scaffold made of poly(ε-caprolactone) (PCL) and methacrylated hyaluronic acid (MeHA) hydrogel and describes the corresponding physical properties (surface area, porosity, and mechanical strength) and host response (angiogenesis and fibrosis) after subcutaneous transplantation. Specifically, we synthesise MeHA with different degrees of substitution and fabricate a PCL scaffold with different porosities. Subsequently, we construct a series of PCL/MeHA composite scaffolds by combining these hydrogels and scaffolds. In experiments with mice, the scaffold composed of 3% PCL and 10-100 kDa, degree of substitution 70% MeHA results in the least fibrosis and a higher degree of angiogenesis. This study highlights the potential of PCL/MeHA composite scaffolds for subcutaneous cell transplantation, given their desirable physical properties and host response.