{"title":"使用无 ITO 电致变色薄膜制造热镜","authors":"Chao-Te Lee , Hung-Pin Chen , Wei-Chun Chen , Jing-Han Xie , Cheng-Chung Jaing","doi":"10.1016/j.rio.2024.100735","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, WO<sub>3</sub>/Ag/W/WO<sub>3</sub> (WAWW) films were deposited at room temperature on a B270 glass substrate from W and Ag targets using a radiofrequency magnetron reactive sputtering system. The influence of the thin tungsten interlayer on the electrical and optical properties of the WAWW layer structure was investigated through ellipsometry, a four-point probe and a spectrophotometer. It was determined that the thin tungsten interlayer effectively prevented the oxidation of the silver film. The WAWW film had a dielectric-metal-dielectric (DMD) layered structure with good electrical conductivity and high visible transmittance. The tungsten layer was no more than 2-nm thick. The sheet resistance and luminous transmittance of the WO<sub>3</sub>(29.5 nm)/Ag(14.2 nm)/W(2 nm)/WO<sub>3</sub>(68.6 nm) film were 4.64 Ω/sq and 65.4 %, respectively. Based on the WAWW four-layer structure, stacked WO<sub>3</sub>(29.5 nm)/Ag(14.2 nm)/W(2 nm)/WO<sub>3</sub>(68.6 nm)/Ag(16.9 nm)/W(2 nm)/WO<sub>3</sub>(30.4 nm) seven-layer structures deposited on B270 glass substrates were used for both ITO-free electrochromic and hot mirror applications. The visible (400–700 nm) and NIR (700–1200 nm) transmittance values of the bleached WAWW seven-layer structure were 71.5 % and 9.9 %, respectively. The visible transmittance of the colored WAWW seven-layer structure was 23.6 %. Finally, the bi-layer WAWW films were used to obtain an ITO-free WAWW seven-layer structure with a good electrochromic and optical performance.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666950124001329/pdfft?md5=561d996ca8def2e41e1e3dd140f48e84&pid=1-s2.0-S2666950124001329-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a hot mirror using ITO-free electrochromic films\",\"authors\":\"Chao-Te Lee , Hung-Pin Chen , Wei-Chun Chen , Jing-Han Xie , Cheng-Chung Jaing\",\"doi\":\"10.1016/j.rio.2024.100735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, WO<sub>3</sub>/Ag/W/WO<sub>3</sub> (WAWW) films were deposited at room temperature on a B270 glass substrate from W and Ag targets using a radiofrequency magnetron reactive sputtering system. The influence of the thin tungsten interlayer on the electrical and optical properties of the WAWW layer structure was investigated through ellipsometry, a four-point probe and a spectrophotometer. It was determined that the thin tungsten interlayer effectively prevented the oxidation of the silver film. The WAWW film had a dielectric-metal-dielectric (DMD) layered structure with good electrical conductivity and high visible transmittance. The tungsten layer was no more than 2-nm thick. The sheet resistance and luminous transmittance of the WO<sub>3</sub>(29.5 nm)/Ag(14.2 nm)/W(2 nm)/WO<sub>3</sub>(68.6 nm) film were 4.64 Ω/sq and 65.4 %, respectively. Based on the WAWW four-layer structure, stacked WO<sub>3</sub>(29.5 nm)/Ag(14.2 nm)/W(2 nm)/WO<sub>3</sub>(68.6 nm)/Ag(16.9 nm)/W(2 nm)/WO<sub>3</sub>(30.4 nm) seven-layer structures deposited on B270 glass substrates were used for both ITO-free electrochromic and hot mirror applications. The visible (400–700 nm) and NIR (700–1200 nm) transmittance values of the bleached WAWW seven-layer structure were 71.5 % and 9.9 %, respectively. The visible transmittance of the colored WAWW seven-layer structure was 23.6 %. Finally, the bi-layer WAWW films were used to obtain an ITO-free WAWW seven-layer structure with a good electrochromic and optical performance.</p></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001329/pdfft?md5=561d996ca8def2e41e1e3dd140f48e84&pid=1-s2.0-S2666950124001329-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950124001329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Fabrication of a hot mirror using ITO-free electrochromic films
In this study, WO3/Ag/W/WO3 (WAWW) films were deposited at room temperature on a B270 glass substrate from W and Ag targets using a radiofrequency magnetron reactive sputtering system. The influence of the thin tungsten interlayer on the electrical and optical properties of the WAWW layer structure was investigated through ellipsometry, a four-point probe and a spectrophotometer. It was determined that the thin tungsten interlayer effectively prevented the oxidation of the silver film. The WAWW film had a dielectric-metal-dielectric (DMD) layered structure with good electrical conductivity and high visible transmittance. The tungsten layer was no more than 2-nm thick. The sheet resistance and luminous transmittance of the WO3(29.5 nm)/Ag(14.2 nm)/W(2 nm)/WO3(68.6 nm) film were 4.64 Ω/sq and 65.4 %, respectively. Based on the WAWW four-layer structure, stacked WO3(29.5 nm)/Ag(14.2 nm)/W(2 nm)/WO3(68.6 nm)/Ag(16.9 nm)/W(2 nm)/WO3(30.4 nm) seven-layer structures deposited on B270 glass substrates were used for both ITO-free electrochromic and hot mirror applications. The visible (400–700 nm) and NIR (700–1200 nm) transmittance values of the bleached WAWW seven-layer structure were 71.5 % and 9.9 %, respectively. The visible transmittance of the colored WAWW seven-layer structure was 23.6 %. Finally, the bi-layer WAWW films were used to obtain an ITO-free WAWW seven-layer structure with a good electrochromic and optical performance.