结合光学流和斯温变换器实现时空视频超分辨率

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-09-01 DOI:10.1016/j.engappai.2024.109227
{"title":"结合光学流和斯温变换器实现时空视频超分辨率","authors":"","doi":"10.1016/j.engappai.2024.109227","DOIUrl":null,"url":null,"abstract":"<div><p>Space–time video super-resolution is a task that aims to interpolate low frame rate, low resolution videos to high frame rate, high resolution ones. While existing Transformer-based methods have achieved results comparable to convolutional neural networks-based methods, the computational cost of Transformer limits its performance with constrained computational resources. Moreover, Swin Transformer may fail to fully exploit the spatio-temporal information of video frames due to the limitation of window size, impeding its effectiveness in handling large motions. To address these limitations, we propose an end-to-end space–time video super-resolution architecture based on optical flow alignment and Swin Transformer. The alignment module is introduced to extract spatio-temporal information from adjacent frames without significantly increasing the computational burden. Additionally, we design a residual convolution layer to enhance the translational invariance of the features extracted by Swin Transformer and introduces additional nonlinear transformations. Experimental results demonstrate that our proposed method achieves superior performance on various benchmark datasets compared to state-of-the-art methods. In terms of Peak Signal-to-Noise Ratio, our method outperforms the state-of-the-art methods by at least 0.15 dB on Vimeo-Medium dataset.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining optical flow and Swin Transformer for Space-Time video super-resolution\",\"authors\":\"\",\"doi\":\"10.1016/j.engappai.2024.109227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Space–time video super-resolution is a task that aims to interpolate low frame rate, low resolution videos to high frame rate, high resolution ones. While existing Transformer-based methods have achieved results comparable to convolutional neural networks-based methods, the computational cost of Transformer limits its performance with constrained computational resources. Moreover, Swin Transformer may fail to fully exploit the spatio-temporal information of video frames due to the limitation of window size, impeding its effectiveness in handling large motions. To address these limitations, we propose an end-to-end space–time video super-resolution architecture based on optical flow alignment and Swin Transformer. The alignment module is introduced to extract spatio-temporal information from adjacent frames without significantly increasing the computational burden. Additionally, we design a residual convolution layer to enhance the translational invariance of the features extracted by Swin Transformer and introduces additional nonlinear transformations. Experimental results demonstrate that our proposed method achieves superior performance on various benchmark datasets compared to state-of-the-art methods. In terms of Peak Signal-to-Noise Ratio, our method outperforms the state-of-the-art methods by at least 0.15 dB on Vimeo-Medium dataset.</p></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095219762401385X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401385X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

时空视频超分辨率是一项旨在将低帧频、低分辨率视频插值为高帧频、高分辨率视频的任务。虽然现有的基于变换器的方法已经取得了与基于卷积神经网络的方法相当的效果,但变换器的计算成本限制了其在计算资源有限的情况下的性能。此外,由于窗口大小的限制,Swin Transformer 可能无法充分利用视频帧的时空信息,从而影响其处理大型运动的效果。针对这些局限性,我们提出了一种基于光流配准和 Swin 变换器的端到端时空视频超分辨率架构。我们引入了对齐模块,以便在不显著增加计算负担的情况下从相邻帧中提取时空信息。此外,我们还设计了一个残差卷积层,以增强斯文变换器提取的特征的平移不变性,并引入了额外的非线性变换。实验结果表明,与最先进的方法相比,我们提出的方法在各种基准数据集上取得了优异的性能。就峰值信噪比而言,在 Vimeo-Medium 数据集上,我们的方法比最先进的方法至少高出 0.15 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining optical flow and Swin Transformer for Space-Time video super-resolution

Space–time video super-resolution is a task that aims to interpolate low frame rate, low resolution videos to high frame rate, high resolution ones. While existing Transformer-based methods have achieved results comparable to convolutional neural networks-based methods, the computational cost of Transformer limits its performance with constrained computational resources. Moreover, Swin Transformer may fail to fully exploit the spatio-temporal information of video frames due to the limitation of window size, impeding its effectiveness in handling large motions. To address these limitations, we propose an end-to-end space–time video super-resolution architecture based on optical flow alignment and Swin Transformer. The alignment module is introduced to extract spatio-temporal information from adjacent frames without significantly increasing the computational burden. Additionally, we design a residual convolution layer to enhance the translational invariance of the features extracted by Swin Transformer and introduces additional nonlinear transformations. Experimental results demonstrate that our proposed method achieves superior performance on various benchmark datasets compared to state-of-the-art methods. In terms of Peak Signal-to-Noise Ratio, our method outperforms the state-of-the-art methods by at least 0.15 dB on Vimeo-Medium dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1