{"title":"用于集成制造系统-过程控制的多代理强化学习","authors":"Chen Li , Qing Chang , Hua-Tzu Fan","doi":"10.1016/j.jmsy.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing complexity, adaptability, and interconnections inherent in modern manufacturing systems have spurred a demand for integrated methodologies to boost productivity, improve quality, and streamline operations across the entire system. This paper introduces a holistic system-process modeling and control approach, utilizing a Multi-Agent Reinforcement Learning (MARL) based integrated control scheme to optimize system yields. The key innovation of this work lies in integrating the theoretical development of manufacturing system-process property understanding with enhanced MARL-based control strategies, thereby improving system dynamics comprehension. This, in turn, enhances informed decision-making and contributes to overall efficiency improvements. In addition, we present two innovative MARL algorithms: the credit-assigned multi-agent actor-attention-critic (C-MAAC) and the physics-guided multi-agent actor-attention-critic (P-MAAC), each designed to capture the individual contributions of agents within the system. C-MAAC extracts global information via parallel-trained attention blocks, whereas P-MAAC embeds system dynamics through permanent production loss (PPL) attribution. Numerical experiments underscore the efficacy of our MARL-based control scheme, particularly highlighting the superior training and execution performance of C-MAAC and P-MAAC. Notably, P-MAAC achieves rapid convergence and exhibits remarkable robustness against environmental variations, validating the proposed approach’s practical relevance and effectiveness.</p></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"76 ","pages":"Pages 585-598"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-agent reinforcement learning for integrated manufacturing system-process control\",\"authors\":\"Chen Li , Qing Chang , Hua-Tzu Fan\",\"doi\":\"10.1016/j.jmsy.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing complexity, adaptability, and interconnections inherent in modern manufacturing systems have spurred a demand for integrated methodologies to boost productivity, improve quality, and streamline operations across the entire system. This paper introduces a holistic system-process modeling and control approach, utilizing a Multi-Agent Reinforcement Learning (MARL) based integrated control scheme to optimize system yields. The key innovation of this work lies in integrating the theoretical development of manufacturing system-process property understanding with enhanced MARL-based control strategies, thereby improving system dynamics comprehension. This, in turn, enhances informed decision-making and contributes to overall efficiency improvements. In addition, we present two innovative MARL algorithms: the credit-assigned multi-agent actor-attention-critic (C-MAAC) and the physics-guided multi-agent actor-attention-critic (P-MAAC), each designed to capture the individual contributions of agents within the system. C-MAAC extracts global information via parallel-trained attention blocks, whereas P-MAAC embeds system dynamics through permanent production loss (PPL) attribution. Numerical experiments underscore the efficacy of our MARL-based control scheme, particularly highlighting the superior training and execution performance of C-MAAC and P-MAAC. Notably, P-MAAC achieves rapid convergence and exhibits remarkable robustness against environmental variations, validating the proposed approach’s practical relevance and effectiveness.</p></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"76 \",\"pages\":\"Pages 585-598\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524001845\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524001845","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Multi-agent reinforcement learning for integrated manufacturing system-process control
The increasing complexity, adaptability, and interconnections inherent in modern manufacturing systems have spurred a demand for integrated methodologies to boost productivity, improve quality, and streamline operations across the entire system. This paper introduces a holistic system-process modeling and control approach, utilizing a Multi-Agent Reinforcement Learning (MARL) based integrated control scheme to optimize system yields. The key innovation of this work lies in integrating the theoretical development of manufacturing system-process property understanding with enhanced MARL-based control strategies, thereby improving system dynamics comprehension. This, in turn, enhances informed decision-making and contributes to overall efficiency improvements. In addition, we present two innovative MARL algorithms: the credit-assigned multi-agent actor-attention-critic (C-MAAC) and the physics-guided multi-agent actor-attention-critic (P-MAAC), each designed to capture the individual contributions of agents within the system. C-MAAC extracts global information via parallel-trained attention blocks, whereas P-MAAC embeds system dynamics through permanent production loss (PPL) attribution. Numerical experiments underscore the efficacy of our MARL-based control scheme, particularly highlighting the superior training and execution performance of C-MAAC and P-MAAC. Notably, P-MAAC achieves rapid convergence and exhibits remarkable robustness against environmental variations, validating the proposed approach’s practical relevance and effectiveness.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.