Muhammad Najmi Mohd Nazri, Nur Amira Khairil Anwar, Nur Fatihah Mohd Zaidi, Khairul Mohd Fadzli Mustaffa, Noor Fatmawati Mokhtar
{"title":"从琼脂糖珠 SELEX 中分离出的 PD-L1 DNA 嵌合体。","authors":"Muhammad Najmi Mohd Nazri, Nur Amira Khairil Anwar, Nur Fatihah Mohd Zaidi, Khairul Mohd Fadzli Mustaffa, Noor Fatmawati Mokhtar","doi":"10.1016/j.bmcl.2024.129943","DOIUrl":null,"url":null,"abstract":"<div><p>Increased expression and activity of the PD-L1/PD-1 pathway suppresses the activation of cytotoxic T cells, which is vital in anti-tumour defence, allowing tumours to rise, expand and progress. Current strategies using antibodies to target PD-1/PD-L1 have been very effective in cancer therapeutics and companion diagnostics. Aptamers are a new class of molecules that offer an alternative to antibodies. Herein, the systematic evolution of ligands by exponential enrichment (SELEX) using agarose slurry beads was conducted to isolate DNA aptamers specific to recombinant human PD-L1 (rhPD-L1). Isolated aptamers were sequenced and analysed using MEGA X and structural features were examined using mFold. Three aptamer candidates (P33, <em>P</em>32, and P12) were selected for evaluation of binding affinity (dissociation constant, <em>K</em><sub>d</sub>) using ELONA and specificity and competitive inhibition assessment using the potentiostat-electrochemical method. Among those three, <em>P</em>32 displayed the highest specificity (8 nM) against PD-L1. However, <em>P</em>32 competes for the same binding site with the control antibody, 28–8. This study warrants further assessment of <em>P</em>32 aptamer as a potential, cost-effective alternative tool for targeting PD-L1.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"112 ","pages":"Article 129943"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PD-L1 DNA aptamers isolated from agarose-bead SELEX\",\"authors\":\"Muhammad Najmi Mohd Nazri, Nur Amira Khairil Anwar, Nur Fatihah Mohd Zaidi, Khairul Mohd Fadzli Mustaffa, Noor Fatmawati Mokhtar\",\"doi\":\"10.1016/j.bmcl.2024.129943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increased expression and activity of the PD-L1/PD-1 pathway suppresses the activation of cytotoxic T cells, which is vital in anti-tumour defence, allowing tumours to rise, expand and progress. Current strategies using antibodies to target PD-1/PD-L1 have been very effective in cancer therapeutics and companion diagnostics. Aptamers are a new class of molecules that offer an alternative to antibodies. Herein, the systematic evolution of ligands by exponential enrichment (SELEX) using agarose slurry beads was conducted to isolate DNA aptamers specific to recombinant human PD-L1 (rhPD-L1). Isolated aptamers were sequenced and analysed using MEGA X and structural features were examined using mFold. Three aptamer candidates (P33, <em>P</em>32, and P12) were selected for evaluation of binding affinity (dissociation constant, <em>K</em><sub>d</sub>) using ELONA and specificity and competitive inhibition assessment using the potentiostat-electrochemical method. Among those three, <em>P</em>32 displayed the highest specificity (8 nM) against PD-L1. However, <em>P</em>32 competes for the same binding site with the control antibody, 28–8. This study warrants further assessment of <em>P</em>32 aptamer as a potential, cost-effective alternative tool for targeting PD-L1.</p></div>\",\"PeriodicalId\":256,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry Letters\",\"volume\":\"112 \",\"pages\":\"Article 129943\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960894X24003457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X24003457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
PD-L1 DNA aptamers isolated from agarose-bead SELEX
Increased expression and activity of the PD-L1/PD-1 pathway suppresses the activation of cytotoxic T cells, which is vital in anti-tumour defence, allowing tumours to rise, expand and progress. Current strategies using antibodies to target PD-1/PD-L1 have been very effective in cancer therapeutics and companion diagnostics. Aptamers are a new class of molecules that offer an alternative to antibodies. Herein, the systematic evolution of ligands by exponential enrichment (SELEX) using agarose slurry beads was conducted to isolate DNA aptamers specific to recombinant human PD-L1 (rhPD-L1). Isolated aptamers were sequenced and analysed using MEGA X and structural features were examined using mFold. Three aptamer candidates (P33, P32, and P12) were selected for evaluation of binding affinity (dissociation constant, Kd) using ELONA and specificity and competitive inhibition assessment using the potentiostat-electrochemical method. Among those three, P32 displayed the highest specificity (8 nM) against PD-L1. However, P32 competes for the same binding site with the control antibody, 28–8. This study warrants further assessment of P32 aptamer as a potential, cost-effective alternative tool for targeting PD-L1.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.