Thomas E Harrison, Nawsad Alam, Brendan Farrell, Doris Quinkert, Amelia M Lias, Lloyd D W King, Lea K Barfod, Simon J Draper, Ivan Campeotto, Matthew K Higgins
{"title":"以结构为导向合理设计血期疟疾疫苗免疫原,呈现 PfRH5 的单一表位。","authors":"Thomas E Harrison, Nawsad Alam, Brendan Farrell, Doris Quinkert, Amelia M Lias, Lloyd D W King, Lea K Barfod, Simon J Draper, Ivan Campeotto, Matthew K Higgins","doi":"10.1038/s44321-024-00123-0","DOIUrl":null,"url":null,"abstract":"<p><p>There is an urgent need for improved malaria vaccine immunogens. Invasion of erythrocytes by Plasmodium falciparum is essential for its life cycle, preceding symptoms of disease and parasite transmission. Antibodies which target PfRH5 are highly effective at preventing erythrocyte invasion and the most potent growth-inhibitory antibodies bind a single epitope. Here we use structure-guided approaches to design a small synthetic immunogen, RH5-34EM which recapitulates this epitope. Structural biology and biophysics demonstrate that RH5-34EM is correctly folded and binds neutralising monoclonal antibodies with nanomolar affinity. In immunised rats, RH5-34EM induces PfRH5-targeting antibodies that inhibit parasite growth. While PfRH5-specific antibodies were induced at a lower concentration by RH5-34EM than by PfRH5, RH5-34EM induced antibodies that were a thousand-fold more growth-inhibitory as a factor of PfRH5-specific antibody concentration. Finally, we show that priming with RH5-34EM and boosting with PfRH5 achieves the best balance between antibody quality and quantity and induces the most effective growth-inhibitory response. This rationally designed vaccine immunogen is now available for use as part of future malaria vaccines, alone or in combination with other immunogens.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"2539-2559"},"PeriodicalIF":9.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473951/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rational structure-guided design of a blood stage malaria vaccine immunogen presenting a single epitope from PfRH5.\",\"authors\":\"Thomas E Harrison, Nawsad Alam, Brendan Farrell, Doris Quinkert, Amelia M Lias, Lloyd D W King, Lea K Barfod, Simon J Draper, Ivan Campeotto, Matthew K Higgins\",\"doi\":\"10.1038/s44321-024-00123-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is an urgent need for improved malaria vaccine immunogens. Invasion of erythrocytes by Plasmodium falciparum is essential for its life cycle, preceding symptoms of disease and parasite transmission. Antibodies which target PfRH5 are highly effective at preventing erythrocyte invasion and the most potent growth-inhibitory antibodies bind a single epitope. Here we use structure-guided approaches to design a small synthetic immunogen, RH5-34EM which recapitulates this epitope. Structural biology and biophysics demonstrate that RH5-34EM is correctly folded and binds neutralising monoclonal antibodies with nanomolar affinity. In immunised rats, RH5-34EM induces PfRH5-targeting antibodies that inhibit parasite growth. While PfRH5-specific antibodies were induced at a lower concentration by RH5-34EM than by PfRH5, RH5-34EM induced antibodies that were a thousand-fold more growth-inhibitory as a factor of PfRH5-specific antibody concentration. Finally, we show that priming with RH5-34EM and boosting with PfRH5 achieves the best balance between antibody quality and quantity and induces the most effective growth-inhibitory response. This rationally designed vaccine immunogen is now available for use as part of future malaria vaccines, alone or in combination with other immunogens.</p>\",\"PeriodicalId\":11597,\"journal\":{\"name\":\"EMBO Molecular Medicine\",\"volume\":\" \",\"pages\":\"2539-2559\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s44321-024-00123-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00123-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Rational structure-guided design of a blood stage malaria vaccine immunogen presenting a single epitope from PfRH5.
There is an urgent need for improved malaria vaccine immunogens. Invasion of erythrocytes by Plasmodium falciparum is essential for its life cycle, preceding symptoms of disease and parasite transmission. Antibodies which target PfRH5 are highly effective at preventing erythrocyte invasion and the most potent growth-inhibitory antibodies bind a single epitope. Here we use structure-guided approaches to design a small synthetic immunogen, RH5-34EM which recapitulates this epitope. Structural biology and biophysics demonstrate that RH5-34EM is correctly folded and binds neutralising monoclonal antibodies with nanomolar affinity. In immunised rats, RH5-34EM induces PfRH5-targeting antibodies that inhibit parasite growth. While PfRH5-specific antibodies were induced at a lower concentration by RH5-34EM than by PfRH5, RH5-34EM induced antibodies that were a thousand-fold more growth-inhibitory as a factor of PfRH5-specific antibody concentration. Finally, we show that priming with RH5-34EM and boosting with PfRH5 achieves the best balance between antibody quality and quantity and induces the most effective growth-inhibitory response. This rationally designed vaccine immunogen is now available for use as part of future malaria vaccines, alone or in combination with other immunogens.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)