K. Kalaiponmani , B. Parameswari , A. Tripathi , V. Celia Chalam
{"title":"开发用于同时检测大豆病毒的简单和五重 RT-PCR 技术。","authors":"K. Kalaiponmani , B. Parameswari , A. Tripathi , V. Celia Chalam","doi":"10.1016/j.jviromet.2024.115010","DOIUrl":null,"url":null,"abstract":"<div><p>Five simplex and a multiplex-RT-PCR (m-RT-PCR) protocols were developed for detection and differentiation of bean pod mottle virus (BPMV), cherry leaf roll virus (CLRV), raspberry ringspot virus (RpRSV), soybean mosaic virus (SMV) and tomato ringspot virus (ToRSV) infecting soybean. The simplex RT-PCR protocols produced virus-specific amplicons of 538 bp for BPMV, 139 bp for CLRV, 298 bp for RpRSV, 403 bp for SMV, and 282 bp for ToRSV, with sensitivity down to 10<sup>−4</sup> diluted cDNA. Further, to detect all the five viruses simultaneously in a single tube a quintuplex RT-PCR protocol was optimized with as low as 10<sup>−3</sup> diluted cDNA and 0.05 µM primer. To validate the reliability of the simplex RT-PCR protocol, imported soybean samples were tested by ELISA as well as RT-PCR. The results revealed that the developed protocol could detect the viruses in imported soybean, and found to be efficient than ELISA in resolving ambiguity in detection of seed borne viruses. The developed simplex and quintuplex RT-PCR protocol will be quite helpful for the diagnosis of soybean germplasm co-infected with viruses during the quarantine processing for ensuring virus free long term seed conservation in the National Gene Bank as well as for quarantine certification.</p></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"330 ","pages":"Article 115010"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of simplex and quintuplex RT-PCR for simultaneous detection of soybean viruses\",\"authors\":\"K. Kalaiponmani , B. Parameswari , A. Tripathi , V. Celia Chalam\",\"doi\":\"10.1016/j.jviromet.2024.115010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Five simplex and a multiplex-RT-PCR (m-RT-PCR) protocols were developed for detection and differentiation of bean pod mottle virus (BPMV), cherry leaf roll virus (CLRV), raspberry ringspot virus (RpRSV), soybean mosaic virus (SMV) and tomato ringspot virus (ToRSV) infecting soybean. The simplex RT-PCR protocols produced virus-specific amplicons of 538 bp for BPMV, 139 bp for CLRV, 298 bp for RpRSV, 403 bp for SMV, and 282 bp for ToRSV, with sensitivity down to 10<sup>−4</sup> diluted cDNA. Further, to detect all the five viruses simultaneously in a single tube a quintuplex RT-PCR protocol was optimized with as low as 10<sup>−3</sup> diluted cDNA and 0.05 µM primer. To validate the reliability of the simplex RT-PCR protocol, imported soybean samples were tested by ELISA as well as RT-PCR. The results revealed that the developed protocol could detect the viruses in imported soybean, and found to be efficient than ELISA in resolving ambiguity in detection of seed borne viruses. The developed simplex and quintuplex RT-PCR protocol will be quite helpful for the diagnosis of soybean germplasm co-infected with viruses during the quarantine processing for ensuring virus free long term seed conservation in the National Gene Bank as well as for quarantine certification.</p></div>\",\"PeriodicalId\":17663,\"journal\":{\"name\":\"Journal of virological methods\",\"volume\":\"330 \",\"pages\":\"Article 115010\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of virological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166093424001344\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093424001344","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development of simplex and quintuplex RT-PCR for simultaneous detection of soybean viruses
Five simplex and a multiplex-RT-PCR (m-RT-PCR) protocols were developed for detection and differentiation of bean pod mottle virus (BPMV), cherry leaf roll virus (CLRV), raspberry ringspot virus (RpRSV), soybean mosaic virus (SMV) and tomato ringspot virus (ToRSV) infecting soybean. The simplex RT-PCR protocols produced virus-specific amplicons of 538 bp for BPMV, 139 bp for CLRV, 298 bp for RpRSV, 403 bp for SMV, and 282 bp for ToRSV, with sensitivity down to 10−4 diluted cDNA. Further, to detect all the five viruses simultaneously in a single tube a quintuplex RT-PCR protocol was optimized with as low as 10−3 diluted cDNA and 0.05 µM primer. To validate the reliability of the simplex RT-PCR protocol, imported soybean samples were tested by ELISA as well as RT-PCR. The results revealed that the developed protocol could detect the viruses in imported soybean, and found to be efficient than ELISA in resolving ambiguity in detection of seed borne viruses. The developed simplex and quintuplex RT-PCR protocol will be quite helpful for the diagnosis of soybean germplasm co-infected with viruses during the quarantine processing for ensuring virus free long term seed conservation in the National Gene Bank as well as for quarantine certification.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.