Alexandra Lapat Polasko , Dalin Zhang , Avanti Ramraj , Chun-Lung Chiu , Fernando J. Garcia-Marques , Abel Bermudez , Kathryn Kapp , Eric Peterson , Zhengyuan Qiu , Anna S. Pollack , Hongjuan Zhao , Jonathan R. Pollack , Sharon J. Pitteri , James D. Brooks
{"title":"利用良性前列腺组织建立患者来源异种移植模型,并确定其分子特征、细胞特征和临床用途。","authors":"Alexandra Lapat Polasko , Dalin Zhang , Avanti Ramraj , Chun-Lung Chiu , Fernando J. Garcia-Marques , Abel Bermudez , Kathryn Kapp , Eric Peterson , Zhengyuan Qiu , Anna S. Pollack , Hongjuan Zhao , Jonathan R. Pollack , Sharon J. Pitteri , James D. Brooks","doi":"10.1016/j.labinv.2024.102129","DOIUrl":null,"url":null,"abstract":"<div><p>Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.</p></div>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":"104 10","pages":"Article 102129"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing and Characterizing the Molecular Profiles, Cellular Features, and Clinical Utility of a Patient-Derived Xenograft Model Using Benign Prostatic Tissues\",\"authors\":\"Alexandra Lapat Polasko , Dalin Zhang , Avanti Ramraj , Chun-Lung Chiu , Fernando J. Garcia-Marques , Abel Bermudez , Kathryn Kapp , Eric Peterson , Zhengyuan Qiu , Anna S. Pollack , Hongjuan Zhao , Jonathan R. Pollack , Sharon J. Pitteri , James D. Brooks\",\"doi\":\"10.1016/j.labinv.2024.102129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.</p></div>\",\"PeriodicalId\":17930,\"journal\":{\"name\":\"Laboratory Investigation\",\"volume\":\"104 10\",\"pages\":\"Article 102129\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0023683724018075\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0023683724018075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Establishing and Characterizing the Molecular Profiles, Cellular Features, and Clinical Utility of a Patient-Derived Xenograft Model Using Benign Prostatic Tissues
Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.
期刊介绍:
Laboratory Investigation is an international journal owned by the United States and Canadian Academy of Pathology. Laboratory Investigation offers prompt publication of high-quality original research in all biomedical disciplines relating to the understanding of human disease and the application of new methods to the diagnosis of disease. Both human and experimental studies are welcome.