{"title":"β-羟丁酸和线粒体介导中链脂肪酸、DHA与轻度认知障碍之间的关系:一项巢式病例对照研究。","authors":"Tong Yang, Huilian Duan, Yuan Li, Ning Xu, Zehao Wang, Zhenshu Li, Yongjie Chen, Yue Du, Meilin Zhang, Jing Yan, Changqing Sun, Guangshun Wang, Wen Li, Xin Li, Fei Ma, Guowei Huang","doi":"10.1080/1028415X.2024.2398364","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medium-chain fatty acids (MCFAs) and docosahexaenoic acid (DHA) could affect the occurrence of mild cognitive impairment (MCI). β-hydroxybutyrate (BHB), mitochondrial DNA copy number (mtDNAcn) and mitochondrial DNA (mtDNA) deletions might be their potential mechanisms. This study aimed to explore the relationship between MCFAs, DHA and MCI, and potential mechanisms.</p><p><strong>Methods: </strong>This study used data from Tianjin Elderly Nutrition and Cognition (TENC) cohort study, 120 individuals were identified with new onset MCI during follow-up, 120 individuals without MCI were selected by 1:1 matching sex, age, and education levels as the control group from TENC. Conditional logistic regression analysis and mediation effect analysis were used to explore their relationship.</p><p><strong>Results: </strong>Higher serum octanoic acid levels (OR: 0.633, 95% CI: 0.520, 0.769), higher serum DHA levels (OR: 0.962, 95% CI: 0.942, 0.981), and more mtDNAcn (OR: 0.436, 95% CI: 0.240, 0.794) were associated with lower MCI risk, while more mtDNA deletions was associated with higher MCI risk (OR: 8.833, 95% CI: 3.909, 19.960). Mediation analysis suggested that BHB and mtDNAcn, in series, have mediation roles in the association between octanoic acid and MCI risk, and mtDNA deletions have mediation roles in the association between DHA and MCI risk.</p><p><strong>Conclusion: </strong>Higher serum octanoic acid and DHA levels were associated with lower MCI risk. Octanoic acid could affect the incidence of MCI through BHB, then mitochondria function, or through mitochondria function, or directly. Serum DHA level could affect the incidence of MCI through mitochondria function, or directly.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-hydroxybutyrate and mitochondria mediate the association between medium-chain fatty acids, DHA and mild cognitive impairment: a nested case-control study.\",\"authors\":\"Tong Yang, Huilian Duan, Yuan Li, Ning Xu, Zehao Wang, Zhenshu Li, Yongjie Chen, Yue Du, Meilin Zhang, Jing Yan, Changqing Sun, Guangshun Wang, Wen Li, Xin Li, Fei Ma, Guowei Huang\",\"doi\":\"10.1080/1028415X.2024.2398364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medium-chain fatty acids (MCFAs) and docosahexaenoic acid (DHA) could affect the occurrence of mild cognitive impairment (MCI). β-hydroxybutyrate (BHB), mitochondrial DNA copy number (mtDNAcn) and mitochondrial DNA (mtDNA) deletions might be their potential mechanisms. This study aimed to explore the relationship between MCFAs, DHA and MCI, and potential mechanisms.</p><p><strong>Methods: </strong>This study used data from Tianjin Elderly Nutrition and Cognition (TENC) cohort study, 120 individuals were identified with new onset MCI during follow-up, 120 individuals without MCI were selected by 1:1 matching sex, age, and education levels as the control group from TENC. Conditional logistic regression analysis and mediation effect analysis were used to explore their relationship.</p><p><strong>Results: </strong>Higher serum octanoic acid levels (OR: 0.633, 95% CI: 0.520, 0.769), higher serum DHA levels (OR: 0.962, 95% CI: 0.942, 0.981), and more mtDNAcn (OR: 0.436, 95% CI: 0.240, 0.794) were associated with lower MCI risk, while more mtDNA deletions was associated with higher MCI risk (OR: 8.833, 95% CI: 3.909, 19.960). Mediation analysis suggested that BHB and mtDNAcn, in series, have mediation roles in the association between octanoic acid and MCI risk, and mtDNA deletions have mediation roles in the association between DHA and MCI risk.</p><p><strong>Conclusion: </strong>Higher serum octanoic acid and DHA levels were associated with lower MCI risk. Octanoic acid could affect the incidence of MCI through BHB, then mitochondria function, or through mitochondria function, or directly. Serum DHA level could affect the incidence of MCI through mitochondria function, or directly.</p>\",\"PeriodicalId\":19423,\"journal\":{\"name\":\"Nutritional Neuroscience\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutritional Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1028415X.2024.2398364\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutritional Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1028415X.2024.2398364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
背景:中链脂肪酸(MCFAs)和二十二碳六烯酸(DHA)可能会影响轻度认知障碍(MCI)的发生,β-羟丁酸(BHB)、线粒体DNA拷贝数(mtDNAcn)和线粒体DNA(mtDNA)缺失可能是其潜在的机制。本研究旨在探讨MCFAs、DHA与MCI之间的关系及其潜在机制:本研究利用天津市老年人营养与认知队列研究(TENC)的数据,在随访过程中发现了120名新发MCI患者,并通过性别、年龄和教育水平的1:1匹配,选择了120名未患MCI的患者作为对照组。研究采用条件逻辑回归分析和中介效应分析来探讨两者之间的关系:血清辛酸水平越高(OR:0.633,95% CI:0.520,0.769),血清 DHA 水平越高(OR:0.962,95% CI:0.942,0.981),mtDNAcn 越多(OR:0.436,95% CI:0.240,0.794)与较低的 MCI 风险相关,而较多的 mtDNA 缺失与较高的 MCI 风险相关(OR:8.833,95% CI:3.909,19.960)。中介分析表明,BHB和mtDNAcn串联在辛酸与MCI风险的关系中起中介作用,而mtDNA缺失在DHA与MCI风险的关系中起中介作用:结论:血清辛酸和 DHA 水平越高,MCI 风险越低。辛酸可能通过 BHB,然后通过线粒体功能,或通过线粒体功能,或直接影响 MCI 的发病率。血清 DHA 水平可通过线粒体功能或直接影响 MCI 的发病率。
β-hydroxybutyrate and mitochondria mediate the association between medium-chain fatty acids, DHA and mild cognitive impairment: a nested case-control study.
Background: Medium-chain fatty acids (MCFAs) and docosahexaenoic acid (DHA) could affect the occurrence of mild cognitive impairment (MCI). β-hydroxybutyrate (BHB), mitochondrial DNA copy number (mtDNAcn) and mitochondrial DNA (mtDNA) deletions might be their potential mechanisms. This study aimed to explore the relationship between MCFAs, DHA and MCI, and potential mechanisms.
Methods: This study used data from Tianjin Elderly Nutrition and Cognition (TENC) cohort study, 120 individuals were identified with new onset MCI during follow-up, 120 individuals without MCI were selected by 1:1 matching sex, age, and education levels as the control group from TENC. Conditional logistic regression analysis and mediation effect analysis were used to explore their relationship.
Results: Higher serum octanoic acid levels (OR: 0.633, 95% CI: 0.520, 0.769), higher serum DHA levels (OR: 0.962, 95% CI: 0.942, 0.981), and more mtDNAcn (OR: 0.436, 95% CI: 0.240, 0.794) were associated with lower MCI risk, while more mtDNA deletions was associated with higher MCI risk (OR: 8.833, 95% CI: 3.909, 19.960). Mediation analysis suggested that BHB and mtDNAcn, in series, have mediation roles in the association between octanoic acid and MCI risk, and mtDNA deletions have mediation roles in the association between DHA and MCI risk.
Conclusion: Higher serum octanoic acid and DHA levels were associated with lower MCI risk. Octanoic acid could affect the incidence of MCI through BHB, then mitochondria function, or through mitochondria function, or directly. Serum DHA level could affect the incidence of MCI through mitochondria function, or directly.
期刊介绍:
Nutritional Neuroscience is an international, interdisciplinary broad-based, online journal for reporting both basic and clinical research in the field of nutrition that relates to the central and peripheral nervous system. Studies may include the role of different components of normal diet (protein, carbohydrate, fat, moderate use of alcohol, etc.), dietary supplements (minerals, vitamins, hormones, herbs, etc.), and food additives (artificial flavours, colours, sweeteners, etc.) on neurochemistry, neurobiology, and behavioural biology of all vertebrate and invertebrate organisms. Ideally this journal will serve as a forum for neuroscientists, nutritionists, neurologists, psychiatrists, and those interested in preventive medicine.