Huawei Sun, Tao Yang, Roger P Simon, Zhi-Gang Xiong, Tiandong Leng
{"title":"胆固醇代谢酶 CYP46A1 及其代谢产物 24S-Hydroxycholesterol 在缺血性中风中的作用","authors":"Huawei Sun, Tao Yang, Roger P Simon, Zhi-Gang Xiong, Tiandong Leng","doi":"10.1161/STROKEAHA.124.047803","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>For several decades, it has been recognized that overactivation of the glutamate-gated N-methyl-D-aspartate receptors (NMDARs) and subsequent Ca<sup>2+</sup> toxicity play a critical role in ischemic brain injury. 24S-hydroxycholesterol (24S-HC) is a major cholesterol metabolite in the brain, which has been identified as a potent positive allosteric modulator of NMDAR in rat hippocampal neurons. We hypothesize that 24S-HC worsens ischemic brain injury via its potentiation of the NMDAR, and reducing the production of 24S-HC by targeting its synthetic enzyme CYP46A1 provides neuroprotection.</p><p><strong>Methods: </strong>We tested this hypothesis using electrophysiological, pharmacological, and transgenic approaches and in vitro and in vivo cerebral ischemia models.</p><p><strong>Results: </strong>Our data show that 24S-HC potentiates NMDAR activation in primary cultured mouse cortical neurons in a concentration-dependent manner. At 10 µmol/L, it dramatically increases the steady-state currents by 51% and slightly increases the peak currents by 20%. Furthermore, 24S-HC increases NMDA and oxygen-glucose deprivation-induced cortical neuronal injury. The increased neuronal injury is largely abolished by NMDAR channel blocker MK-801, suggesting an NMDAR-dependent mechanism. Pharmacological inhibition of CYP46A1 by voriconazole or gene knockout of <i>Cyp46a1</i> dramatically reduces ischemic brain injury.</p><p><strong>Conclusions: </strong>These results identify a new mechanism and signaling cascade that critically impacts stroke outcome: CYP46A1 → 24S-HC → NMDAR → ischemic brain injury. They offer proof of principle for further development of new strategies for stroke intervention by targeting CYP46A1 or its metabolite 24S-HC.</p>","PeriodicalId":21989,"journal":{"name":"Stroke","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of Cholesterol Metabolic Enzyme CYP46A1 and Its Metabolite 24S-Hydroxycholesterol in Ischemic Stroke.\",\"authors\":\"Huawei Sun, Tao Yang, Roger P Simon, Zhi-Gang Xiong, Tiandong Leng\",\"doi\":\"10.1161/STROKEAHA.124.047803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>For several decades, it has been recognized that overactivation of the glutamate-gated N-methyl-D-aspartate receptors (NMDARs) and subsequent Ca<sup>2+</sup> toxicity play a critical role in ischemic brain injury. 24S-hydroxycholesterol (24S-HC) is a major cholesterol metabolite in the brain, which has been identified as a potent positive allosteric modulator of NMDAR in rat hippocampal neurons. We hypothesize that 24S-HC worsens ischemic brain injury via its potentiation of the NMDAR, and reducing the production of 24S-HC by targeting its synthetic enzyme CYP46A1 provides neuroprotection.</p><p><strong>Methods: </strong>We tested this hypothesis using electrophysiological, pharmacological, and transgenic approaches and in vitro and in vivo cerebral ischemia models.</p><p><strong>Results: </strong>Our data show that 24S-HC potentiates NMDAR activation in primary cultured mouse cortical neurons in a concentration-dependent manner. At 10 µmol/L, it dramatically increases the steady-state currents by 51% and slightly increases the peak currents by 20%. Furthermore, 24S-HC increases NMDA and oxygen-glucose deprivation-induced cortical neuronal injury. The increased neuronal injury is largely abolished by NMDAR channel blocker MK-801, suggesting an NMDAR-dependent mechanism. Pharmacological inhibition of CYP46A1 by voriconazole or gene knockout of <i>Cyp46a1</i> dramatically reduces ischemic brain injury.</p><p><strong>Conclusions: </strong>These results identify a new mechanism and signaling cascade that critically impacts stroke outcome: CYP46A1 → 24S-HC → NMDAR → ischemic brain injury. They offer proof of principle for further development of new strategies for stroke intervention by targeting CYP46A1 or its metabolite 24S-HC.</p>\",\"PeriodicalId\":21989,\"journal\":{\"name\":\"Stroke\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stroke\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/STROKEAHA.124.047803\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroke","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/STROKEAHA.124.047803","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Role of Cholesterol Metabolic Enzyme CYP46A1 and Its Metabolite 24S-Hydroxycholesterol in Ischemic Stroke.
Background: For several decades, it has been recognized that overactivation of the glutamate-gated N-methyl-D-aspartate receptors (NMDARs) and subsequent Ca2+ toxicity play a critical role in ischemic brain injury. 24S-hydroxycholesterol (24S-HC) is a major cholesterol metabolite in the brain, which has been identified as a potent positive allosteric modulator of NMDAR in rat hippocampal neurons. We hypothesize that 24S-HC worsens ischemic brain injury via its potentiation of the NMDAR, and reducing the production of 24S-HC by targeting its synthetic enzyme CYP46A1 provides neuroprotection.
Methods: We tested this hypothesis using electrophysiological, pharmacological, and transgenic approaches and in vitro and in vivo cerebral ischemia models.
Results: Our data show that 24S-HC potentiates NMDAR activation in primary cultured mouse cortical neurons in a concentration-dependent manner. At 10 µmol/L, it dramatically increases the steady-state currents by 51% and slightly increases the peak currents by 20%. Furthermore, 24S-HC increases NMDA and oxygen-glucose deprivation-induced cortical neuronal injury. The increased neuronal injury is largely abolished by NMDAR channel blocker MK-801, suggesting an NMDAR-dependent mechanism. Pharmacological inhibition of CYP46A1 by voriconazole or gene knockout of Cyp46a1 dramatically reduces ischemic brain injury.
Conclusions: These results identify a new mechanism and signaling cascade that critically impacts stroke outcome: CYP46A1 → 24S-HC → NMDAR → ischemic brain injury. They offer proof of principle for further development of new strategies for stroke intervention by targeting CYP46A1 or its metabolite 24S-HC.
期刊介绍:
Stroke is a monthly publication that collates reports of clinical and basic investigation of any aspect of the cerebral circulation and its diseases. The publication covers a wide range of disciplines including anesthesiology, critical care medicine, epidemiology, internal medicine, neurology, neuro-ophthalmology, neuropathology, neuropsychology, neurosurgery, nuclear medicine, nursing, radiology, rehabilitation, speech pathology, vascular physiology, and vascular surgery.
The audience of Stroke includes neurologists, basic scientists, cardiologists, vascular surgeons, internists, interventionalists, neurosurgeons, nurses, and physiatrists.
Stroke is indexed in Biological Abstracts, BIOSIS, CAB Abstracts, Chemical Abstracts, CINAHL, Current Contents, Embase, MEDLINE, and Science Citation Index Expanded.