Oncostatin M 可促进嗜酸性粒细胞慢性鼻炎伴鼻息肉患者的上皮屏障功能障碍。

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Tissue Barriers Pub Date : 2024-09-03 DOI:10.1080/21688370.2024.2399235
Bao-Feng Wang, Ying-Ying Wang, Hai Lin, Yun-Lan Yi
{"title":"Oncostatin M 可促进嗜酸性粒细胞慢性鼻炎伴鼻息肉患者的上皮屏障功能障碍。","authors":"Bao-Feng Wang, Ying-Ying Wang, Hai Lin, Yun-Lan Yi","doi":"10.1080/21688370.2024.2399235","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oncostatin M (OSM) may be involved in the promotion of mucosal epithelial barrier dysfunction in patients with eosinophilic chronic rhinosinusitis with nasal polyps (Eos CRSwNP) by inducing matrix metalloproteinase (MMP) -1 and -7. The aim was to evaluate the roles and mechanisms of action of OSM on MMP-1 and -7 synthesis from nasal epithelial cells (NECs).</p><p><strong>Methods: </strong>OSM, OSM receptor (OSMR), MMP-1 and -7 expression was evaluated in nasal mucosa or primary NECs from scrapings by quantitative polymerase chain reaction (qPCR), immunofluorescence and immunohistochemistry. OSM and other cytokines were used to stimulate air-liquid interface (ALI) cultured NECs. qPCR, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence were used to evaluate the expression of OSMR, MMP-1, -7 and occludin in NECs.</p><p><strong>Results: </strong>Elevated levels of OSMRβ, MMP-1 and -7 were found in the tissues and scraped NECs of Eos CRSwNP in comparison to them obtained from the inferior turbinate (IT) and control subjects. The levels of OSM and OSMRβ mRNA in tissues were positively correlated with the levels of MMP-1 and -7. OSM stimulation of NECs increased the expression of MMP-1 and -7, and the responses were suppressed by a STAT3 inhibitor, and a PI3K inhibitor respectively. In parallel studies, we found that stimulation with OSM disrupted the localization of occludin, a tight junction protein in NECs. The response was suppressed by a pan-MMP inhibitor.</p><p><strong>Conclusion: </strong>OSM induces the synthesis and release of MMP-1 and -7 in NECs. Furthermore, MMP-1 and -7 promote mucosal epithelial barrier dysfunction in patients with Eos CRSwNP.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2399235"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oncostatin M promotes epithelial barrier dysfunction in patients with eosinophilic chronic rhinosinusitis with nasal polyps.\",\"authors\":\"Bao-Feng Wang, Ying-Ying Wang, Hai Lin, Yun-Lan Yi\",\"doi\":\"10.1080/21688370.2024.2399235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Oncostatin M (OSM) may be involved in the promotion of mucosal epithelial barrier dysfunction in patients with eosinophilic chronic rhinosinusitis with nasal polyps (Eos CRSwNP) by inducing matrix metalloproteinase (MMP) -1 and -7. The aim was to evaluate the roles and mechanisms of action of OSM on MMP-1 and -7 synthesis from nasal epithelial cells (NECs).</p><p><strong>Methods: </strong>OSM, OSM receptor (OSMR), MMP-1 and -7 expression was evaluated in nasal mucosa or primary NECs from scrapings by quantitative polymerase chain reaction (qPCR), immunofluorescence and immunohistochemistry. OSM and other cytokines were used to stimulate air-liquid interface (ALI) cultured NECs. qPCR, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence were used to evaluate the expression of OSMR, MMP-1, -7 and occludin in NECs.</p><p><strong>Results: </strong>Elevated levels of OSMRβ, MMP-1 and -7 were found in the tissues and scraped NECs of Eos CRSwNP in comparison to them obtained from the inferior turbinate (IT) and control subjects. The levels of OSM and OSMRβ mRNA in tissues were positively correlated with the levels of MMP-1 and -7. OSM stimulation of NECs increased the expression of MMP-1 and -7, and the responses were suppressed by a STAT3 inhibitor, and a PI3K inhibitor respectively. In parallel studies, we found that stimulation with OSM disrupted the localization of occludin, a tight junction protein in NECs. The response was suppressed by a pan-MMP inhibitor.</p><p><strong>Conclusion: </strong>OSM induces the synthesis and release of MMP-1 and -7 in NECs. Furthermore, MMP-1 and -7 promote mucosal epithelial barrier dysfunction in patients with Eos CRSwNP.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\" \",\"pages\":\"2399235\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2024.2399235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2399235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:目的:评估OSM对鼻腔上皮细胞(NECs)合成MMP-1和-7的作用和作用机制。方法:通过定量聚合酶链式反应(qPCR)评估OSM、OSM受体(OSMR)、MMP-1和-7在鼻粘膜或刮取的原发性NECs中的表达:方法:通过定量聚合酶链式反应(qPCR)、免疫荧光和免疫组织化学方法评估鼻粘膜或刮取物中原发性鼻上皮细胞中 OSM、OSM 受体(OSMR)、MMP-1 和 -7 的表达。用OSM和其他细胞因子刺激气液界面(ALI)培养的NECs,用qPCR、酶联免疫吸附试验(ELISA)和免疫荧光评估OSMR、MMP-1、-7和闭塞素在NECs中的表达:结果:与下鼻甲(IT)和对照组相比,Eos CRSwNP 的组织和刮取的 NECs 中 OSMRβ、MMP-1 和 -7 水平升高。组织中 OSM 和 OSMRβ mRNA 的水平与 MMP-1 和 -7 的水平呈正相关。OSM刺激NECs可增加MMP-1和-7的表达,而STAT3抑制剂和PI3K抑制剂可分别抑制这种反应。在平行研究中,我们发现 OSM 刺激会破坏 NECs 中紧密连接蛋白 occludin 的定位。这种反应被泛MMP抑制剂所抑制:结论:OSM 能诱导 NECs 中 MMP-1 和 -7 的合成和释放。此外,MMP-1 和 -7 还能促进 Eos CRSwNP 患者的粘膜上皮屏障功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oncostatin M promotes epithelial barrier dysfunction in patients with eosinophilic chronic rhinosinusitis with nasal polyps.

Background: Oncostatin M (OSM) may be involved in the promotion of mucosal epithelial barrier dysfunction in patients with eosinophilic chronic rhinosinusitis with nasal polyps (Eos CRSwNP) by inducing matrix metalloproteinase (MMP) -1 and -7. The aim was to evaluate the roles and mechanisms of action of OSM on MMP-1 and -7 synthesis from nasal epithelial cells (NECs).

Methods: OSM, OSM receptor (OSMR), MMP-1 and -7 expression was evaluated in nasal mucosa or primary NECs from scrapings by quantitative polymerase chain reaction (qPCR), immunofluorescence and immunohistochemistry. OSM and other cytokines were used to stimulate air-liquid interface (ALI) cultured NECs. qPCR, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence were used to evaluate the expression of OSMR, MMP-1, -7 and occludin in NECs.

Results: Elevated levels of OSMRβ, MMP-1 and -7 were found in the tissues and scraped NECs of Eos CRSwNP in comparison to them obtained from the inferior turbinate (IT) and control subjects. The levels of OSM and OSMRβ mRNA in tissues were positively correlated with the levels of MMP-1 and -7. OSM stimulation of NECs increased the expression of MMP-1 and -7, and the responses were suppressed by a STAT3 inhibitor, and a PI3K inhibitor respectively. In parallel studies, we found that stimulation with OSM disrupted the localization of occludin, a tight junction protein in NECs. The response was suppressed by a pan-MMP inhibitor.

Conclusion: OSM induces the synthesis and release of MMP-1 and -7 in NECs. Furthermore, MMP-1 and -7 promote mucosal epithelial barrier dysfunction in patients with Eos CRSwNP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
期刊最新文献
Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. The application of explants, crypts, and organoids as models in intestinal barrier research. Decellularized small intestine scaffolds: a potential xenograft for restoration of intestinal perforation. The amazing axolotl: robust kidney regeneration following acute kidney injury. Surface layer proteins from Lactobacillus helveticus ATCC® 15009™ affect the gut barrier morphology and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1