{"title":"万有引力彩虹中渐进安全膨胀的观测制约因素","authors":"Phongpichit Channuie","doi":"10.1016/j.dark.2024.101633","DOIUrl":null,"url":null,"abstract":"<div><p>Using suitable Renormalization Group (RG) based re-summation of quantum corrections to <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> term, a re-summed version of the effective Lagrangian can be obtained (Demmel et al., 2015). In the context of gravity as an Asymptotically Safe (AS) theory, authors of Refs. Liu et al. (2018), Koshelev et al. (2023) proposed a refined Starobinsky model, <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>AS</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>R</mi><mo>/</mo><mn>2</mn><mo>+</mo><mrow><mo>(</mo><mi>α</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mrow><mo>[</mo><mn>1</mn><mo>+</mo><mi>β</mi><mo>ln</mo><mrow><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span>, where <span><math><mi>R</mi></math></span> is the Ricci scalar, <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> are constants and <span><math><mi>μ</mi></math></span> is an energy scale. In the present work, we embed this underlying effective Lagrangian within the framework of gravity’s rainbow. By implementing the COBE normalization and the Planck constraint on the scalar spectrum, we demonstrate that the power spectrum of curvature perturbation relies on <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, as well as on a rainbow parameter. Similarly, the scalar spectral index <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is influenced by <span><math><mi>β</mi></math></span> and the rainbow parameter, yet remains unaffected by <span><math><mi>α</mi></math></span>. Additionally, the tensor-to-scalar ratio <span><math><mi>r</mi></math></span> solely depends on the rainbow parameter. Remarkably, when requiring <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to be consistent with the Planck collaboration at <span><math><mrow><mn>1</mn><mi>σ</mi></mrow></math></span> confidence level, the upper limit on the tensor-to-scalar ratio <span><math><mrow><mi>r</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>036</mn></mrow></math></span> can be naturally satisfied. This value potentially holds promise for potential measurement by Stage IV CMB ground experiments and is certainly within reach of future dedicated space missions.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101633"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational constraints on asymptotic safety inflation in gravity’s rainbow\",\"authors\":\"Phongpichit Channuie\",\"doi\":\"10.1016/j.dark.2024.101633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using suitable Renormalization Group (RG) based re-summation of quantum corrections to <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> term, a re-summed version of the effective Lagrangian can be obtained (Demmel et al., 2015). In the context of gravity as an Asymptotically Safe (AS) theory, authors of Refs. Liu et al. (2018), Koshelev et al. (2023) proposed a refined Starobinsky model, <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>AS</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>R</mi><mo>/</mo><mn>2</mn><mo>+</mo><mrow><mo>(</mo><mi>α</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mrow><mo>[</mo><mn>1</mn><mo>+</mo><mi>β</mi><mo>ln</mo><mrow><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span>, where <span><math><mi>R</mi></math></span> is the Ricci scalar, <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> are constants and <span><math><mi>μ</mi></math></span> is an energy scale. In the present work, we embed this underlying effective Lagrangian within the framework of gravity’s rainbow. By implementing the COBE normalization and the Planck constraint on the scalar spectrum, we demonstrate that the power spectrum of curvature perturbation relies on <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, as well as on a rainbow parameter. Similarly, the scalar spectral index <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is influenced by <span><math><mi>β</mi></math></span> and the rainbow parameter, yet remains unaffected by <span><math><mi>α</mi></math></span>. Additionally, the tensor-to-scalar ratio <span><math><mi>r</mi></math></span> solely depends on the rainbow parameter. Remarkably, when requiring <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to be consistent with the Planck collaboration at <span><math><mrow><mn>1</mn><mi>σ</mi></mrow></math></span> confidence level, the upper limit on the tensor-to-scalar ratio <span><math><mrow><mi>r</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>036</mn></mrow></math></span> can be naturally satisfied. This value potentially holds promise for potential measurement by Stage IV CMB ground experiments and is certainly within reach of future dedicated space missions.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101633\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424002152\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424002152","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
利用适当的重正化群(RG)对 R2 项的量子修正进行再求和,可以得到有效拉格朗日的再求和版本(Demmel 等人,2015 年)。在引力作为渐近安全(AS)理论的背景下,文献Liu et al. (2018)、Koshelev et al. (2023)提出了一个精炼的斯塔罗宾斯基模型:LAS=Mp2R/2+(α/2)R2/[1+βln(R/μ2)],其中 R 是利玛窦标量,α 和 β 是常数,μ 是能标。在本研究中,我们将这一基本有效拉格朗日嵌入引力彩虹框架。通过对标量谱实施 COBE 归一化和普朗克约束,我们证明曲率扰动的功率谱依赖于 α 和 β 以及一个彩虹参数。同样,标量谱指数 ns 受 β 和彩虹参数的影响,但不受 α 的影响。此外,张量与标量之比 r 完全取决于彩虹参数。值得注意的是,当要求 ns 在 1σ 置信度下与普朗克合作的结果一致时,张量与标量比 r<0.036 的上限可以自然地得到满足。这个值有可能被第四阶段的CMB地面实验测量到,当然也是未来专门的太空任务所能达到的。
Observational constraints on asymptotic safety inflation in gravity’s rainbow
Using suitable Renormalization Group (RG) based re-summation of quantum corrections to term, a re-summed version of the effective Lagrangian can be obtained (Demmel et al., 2015). In the context of gravity as an Asymptotically Safe (AS) theory, authors of Refs. Liu et al. (2018), Koshelev et al. (2023) proposed a refined Starobinsky model, , where is the Ricci scalar, and are constants and is an energy scale. In the present work, we embed this underlying effective Lagrangian within the framework of gravity’s rainbow. By implementing the COBE normalization and the Planck constraint on the scalar spectrum, we demonstrate that the power spectrum of curvature perturbation relies on and , as well as on a rainbow parameter. Similarly, the scalar spectral index is influenced by and the rainbow parameter, yet remains unaffected by . Additionally, the tensor-to-scalar ratio solely depends on the rainbow parameter. Remarkably, when requiring to be consistent with the Planck collaboration at confidence level, the upper limit on the tensor-to-scalar ratio can be naturally satisfied. This value potentially holds promise for potential measurement by Stage IV CMB ground experiments and is certainly within reach of future dedicated space missions.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.