{"title":"单层 VOPO4 的电化学钠储存特性:密度泛函理论预测","authors":"Jinggao Wu , Cuirong Deng , Chanyu Zhong , Jing Huang","doi":"10.1016/j.chemphys.2024.112442","DOIUrl":null,"url":null,"abstract":"<div><p>The unique structural properties of two-dimensional materials make them promising for energy storage applications. This work theoretically predicts for the first time that Monolayer VOPO<sub>4</sub> (MNL VOPO<sub>4</sub>), exfoliated from the delithiated phase of tetragonal LiVOPO<sub>4</sub>, is stable at room temperature, exhibiting excellent thermodynamic and kinetic stability, thus making it a promising high-capacity anode material for sodium-ion batteries (SIBs). Compared to bulk VOPO<sub>4</sub>, the monolayer structure significantly reduces the sodium ion migration energy barrier from 1.006 to 0.0795 eV, thereby markedly enhancing sodium ion migration kinetics. MNL VOPO<sub>4</sub> can adsorb up to 32 sodium ions, corresponding to a theoretical capacity of 634.88 mA h g<sup>−1</sup> and an energy density of 895.18 Wh kg<sup>−1</sup>. Furthermore, the excellent structural stability of MNL VOPO<sub>4</sub> favors its cycling performance during charge and discharge processes. This work provides theoretical insights for better utilizing and developing multi-atomic phosphate compounds as electrode materials for secondary batteries.</p></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"587 ","pages":"Article 112442"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical sodium storage properties in monolayer VOPO4: A density functional theory prediction\",\"authors\":\"Jinggao Wu , Cuirong Deng , Chanyu Zhong , Jing Huang\",\"doi\":\"10.1016/j.chemphys.2024.112442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unique structural properties of two-dimensional materials make them promising for energy storage applications. This work theoretically predicts for the first time that Monolayer VOPO<sub>4</sub> (MNL VOPO<sub>4</sub>), exfoliated from the delithiated phase of tetragonal LiVOPO<sub>4</sub>, is stable at room temperature, exhibiting excellent thermodynamic and kinetic stability, thus making it a promising high-capacity anode material for sodium-ion batteries (SIBs). Compared to bulk VOPO<sub>4</sub>, the monolayer structure significantly reduces the sodium ion migration energy barrier from 1.006 to 0.0795 eV, thereby markedly enhancing sodium ion migration kinetics. MNL VOPO<sub>4</sub> can adsorb up to 32 sodium ions, corresponding to a theoretical capacity of 634.88 mA h g<sup>−1</sup> and an energy density of 895.18 Wh kg<sup>−1</sup>. Furthermore, the excellent structural stability of MNL VOPO<sub>4</sub> favors its cycling performance during charge and discharge processes. This work provides theoretical insights for better utilizing and developing multi-atomic phosphate compounds as electrode materials for secondary batteries.</p></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"587 \",\"pages\":\"Article 112442\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010424002714\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002714","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical sodium storage properties in monolayer VOPO4: A density functional theory prediction
The unique structural properties of two-dimensional materials make them promising for energy storage applications. This work theoretically predicts for the first time that Monolayer VOPO4 (MNL VOPO4), exfoliated from the delithiated phase of tetragonal LiVOPO4, is stable at room temperature, exhibiting excellent thermodynamic and kinetic stability, thus making it a promising high-capacity anode material for sodium-ion batteries (SIBs). Compared to bulk VOPO4, the monolayer structure significantly reduces the sodium ion migration energy barrier from 1.006 to 0.0795 eV, thereby markedly enhancing sodium ion migration kinetics. MNL VOPO4 can adsorb up to 32 sodium ions, corresponding to a theoretical capacity of 634.88 mA h g−1 and an energy density of 895.18 Wh kg−1. Furthermore, the excellent structural stability of MNL VOPO4 favors its cycling performance during charge and discharge processes. This work provides theoretical insights for better utilizing and developing multi-atomic phosphate compounds as electrode materials for secondary batteries.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.