{"title":"巴赫瓦洛夫型网格上的有限元法对指数层的二维奇异扰动对流扩散问题的均匀收敛性","authors":"Jin Zhang, Chunxiao Zhang","doi":"10.1016/j.matcom.2024.08.032","DOIUrl":null,"url":null,"abstract":"<div><p>Analyzing uniform convergence of finite element method for a 2-D singularly perturbed convection–diffusion problem with exponential layers on Bakhvalov-type mesh remains a complex, unsolved problem. Previous attempts to address this issue have encountered significant obstacles, largely due to the constraints imposed by a specific mesh. These difficulties stem from three primary factors: the width of the mesh subdomain adjacent to the transition point, constraints imposed by the Dirichlet boundary condition, and the structural characteristics of exponential layers. In response to these challenges, this paper introduces a novel analysis technique that leverages the properties of interpolation and the relationship between the smooth function and the layer function on the boundary. By combining this technique with a simplified interpolation, we establish the uniform convergence of optimal order <span><math><mi>k</mi></math></span> under an energy norm for finite element method of any order <span><math><mi>k</mi></math></span>. Numerical experiments validate our theoretical findings.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform convergence of finite element method on Bakhvalov-type mesh for a 2-D singularly perturbed convection–diffusion problem with exponential layers\",\"authors\":\"Jin Zhang, Chunxiao Zhang\",\"doi\":\"10.1016/j.matcom.2024.08.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Analyzing uniform convergence of finite element method for a 2-D singularly perturbed convection–diffusion problem with exponential layers on Bakhvalov-type mesh remains a complex, unsolved problem. Previous attempts to address this issue have encountered significant obstacles, largely due to the constraints imposed by a specific mesh. These difficulties stem from three primary factors: the width of the mesh subdomain adjacent to the transition point, constraints imposed by the Dirichlet boundary condition, and the structural characteristics of exponential layers. In response to these challenges, this paper introduces a novel analysis technique that leverages the properties of interpolation and the relationship between the smooth function and the layer function on the boundary. By combining this technique with a simplified interpolation, we establish the uniform convergence of optimal order <span><math><mi>k</mi></math></span> under an energy norm for finite element method of any order <span><math><mi>k</mi></math></span>. Numerical experiments validate our theoretical findings.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003446\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003446","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在巴赫瓦洛夫网格上分析具有指数层的二维奇异扰动对流扩散问题的有限元方法的均匀收敛性仍然是一个复杂的未决问题。以往解决这一问题的尝试遇到了很大的障碍,这主要是由于特定网格所带来的限制。这些困难主要源于三个因素:与过渡点相邻的网格子域的宽度、Dirichlet 边界条件的限制以及指数层的结构特征。为了应对这些挑战,本文介绍了一种新颖的分析技术,该技术利用了插值的特性以及平滑函数和边界层函数之间的关系。通过将该技术与简化插值相结合,我们建立了任意阶数 k 的有限元方法在能量规范下最优阶数 k 的均匀收敛性。
Uniform convergence of finite element method on Bakhvalov-type mesh for a 2-D singularly perturbed convection–diffusion problem with exponential layers
Analyzing uniform convergence of finite element method for a 2-D singularly perturbed convection–diffusion problem with exponential layers on Bakhvalov-type mesh remains a complex, unsolved problem. Previous attempts to address this issue have encountered significant obstacles, largely due to the constraints imposed by a specific mesh. These difficulties stem from three primary factors: the width of the mesh subdomain adjacent to the transition point, constraints imposed by the Dirichlet boundary condition, and the structural characteristics of exponential layers. In response to these challenges, this paper introduces a novel analysis technique that leverages the properties of interpolation and the relationship between the smooth function and the layer function on the boundary. By combining this technique with a simplified interpolation, we establish the uniform convergence of optimal order under an energy norm for finite element method of any order . Numerical experiments validate our theoretical findings.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.