US-Net:采用卷积注意机制的 U 型网络,用于超声医学图像

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-08-23 DOI:10.1016/j.cag.2024.104054
Xiaoyu Xie , Pingping Liu , Yijun Lang , Zhenjie Guo , Zhongxi Yang , Yuhao Zhao
{"title":"US-Net:采用卷积注意机制的 U 型网络,用于超声医学图像","authors":"Xiaoyu Xie ,&nbsp;Pingping Liu ,&nbsp;Yijun Lang ,&nbsp;Zhenjie Guo ,&nbsp;Zhongxi Yang ,&nbsp;Yuhao Zhao","doi":"10.1016/j.cag.2024.104054","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound imaging, characterized by low contrast, high noise, and interference from surrounding tissues, poses significant challenges in lesion segmentation. To tackle these issues, we introduce an enhanced U-shaped network that incorporates several novel features for precise, automated segmentation. Firstly, our model utilizes a convolution-based self-attention mechanism to establish long-range dependencies in feature maps, crucial for small dataset applications, accompanied by a soft thresholding method for noise reduction. Secondly, we employ multi-sized convolutional kernels to enrich feature processing, coupled with curvature calculations to accentuate edge details via a soft-attention approach. Thirdly, an advanced skip connection strategy is implemented in the UNet architecture, integrating information entropy to assess and utilize texture-rich channels, thereby improving semantic detail in the encoder before merging with decoder outputs. We validated our approach using a newly curated dataset, VPUSI (Vascular Plaques Ultrasound Images), alongside the established datasets, BUSI, TN3K and DDTI. Comparative experiments on these datasets show that our model outperforms existing state-of-the-art techniques in segmentation accuracy.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104054"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"US-Net: U-shaped network with Convolutional Attention Mechanism for ultrasound medical images\",\"authors\":\"Xiaoyu Xie ,&nbsp;Pingping Liu ,&nbsp;Yijun Lang ,&nbsp;Zhenjie Guo ,&nbsp;Zhongxi Yang ,&nbsp;Yuhao Zhao\",\"doi\":\"10.1016/j.cag.2024.104054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasound imaging, characterized by low contrast, high noise, and interference from surrounding tissues, poses significant challenges in lesion segmentation. To tackle these issues, we introduce an enhanced U-shaped network that incorporates several novel features for precise, automated segmentation. Firstly, our model utilizes a convolution-based self-attention mechanism to establish long-range dependencies in feature maps, crucial for small dataset applications, accompanied by a soft thresholding method for noise reduction. Secondly, we employ multi-sized convolutional kernels to enrich feature processing, coupled with curvature calculations to accentuate edge details via a soft-attention approach. Thirdly, an advanced skip connection strategy is implemented in the UNet architecture, integrating information entropy to assess and utilize texture-rich channels, thereby improving semantic detail in the encoder before merging with decoder outputs. We validated our approach using a newly curated dataset, VPUSI (Vascular Plaques Ultrasound Images), alongside the established datasets, BUSI, TN3K and DDTI. Comparative experiments on these datasets show that our model outperforms existing state-of-the-art techniques in segmentation accuracy.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104054\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001894\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001894","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

超声成像的特点是对比度低、噪声大、周围组织干扰多,这给病变分割带来了巨大挑战。为了解决这些问题,我们引入了一种增强型 U 形网络,该网络结合了多种新功能,可实现精确的自动分割。首先,我们的模型利用基于卷积的自注意机制在特征图中建立长程依赖关系,这对小数据集应用至关重要,同时还采用了软阈值方法来降低噪声。其次,我们采用多大小卷积核来丰富特征处理,并结合曲率计算,通过软关注方法突出边缘细节。第三,在 UNet 架构中实施了先进的跳转连接策略,整合信息熵来评估和利用纹理丰富的通道,从而在与解码器输出合并之前改善编码器中的语义细节。我们使用了一个新开发的数据集 VPUSI(血管斑块超声图像),以及已有的数据集 BUSI、TN3K 和 DDTI,对我们的方法进行了验证。在这些数据集上进行的对比实验表明,我们的模型在分割准确性上优于现有的最先进技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
US-Net: U-shaped network with Convolutional Attention Mechanism for ultrasound medical images

Ultrasound imaging, characterized by low contrast, high noise, and interference from surrounding tissues, poses significant challenges in lesion segmentation. To tackle these issues, we introduce an enhanced U-shaped network that incorporates several novel features for precise, automated segmentation. Firstly, our model utilizes a convolution-based self-attention mechanism to establish long-range dependencies in feature maps, crucial for small dataset applications, accompanied by a soft thresholding method for noise reduction. Secondly, we employ multi-sized convolutional kernels to enrich feature processing, coupled with curvature calculations to accentuate edge details via a soft-attention approach. Thirdly, an advanced skip connection strategy is implemented in the UNet architecture, integrating information entropy to assess and utilize texture-rich channels, thereby improving semantic detail in the encoder before merging with decoder outputs. We validated our approach using a newly curated dataset, VPUSI (Vascular Plaques Ultrasound Images), alongside the established datasets, BUSI, TN3K and DDTI. Comparative experiments on these datasets show that our model outperforms existing state-of-the-art techniques in segmentation accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Contrast and content preserving HDMR-based color-to-gray conversion Retraction notice to “SHREC 2021: 3D point cloud change detection for street scenes” Foreword to the special section on Conference on Graphics, Patterns, and Images (SIBGRAPI 2024) The phantom effect in information visualization Efficient inverse-kinematics solver for precise pose reconstruction of skinned 3D models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1