Xiaoyu Xie , Pingping Liu , Yijun Lang , Zhenjie Guo , Zhongxi Yang , Yuhao Zhao
{"title":"US-Net:采用卷积注意机制的 U 型网络,用于超声医学图像","authors":"Xiaoyu Xie , Pingping Liu , Yijun Lang , Zhenjie Guo , Zhongxi Yang , Yuhao Zhao","doi":"10.1016/j.cag.2024.104054","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound imaging, characterized by low contrast, high noise, and interference from surrounding tissues, poses significant challenges in lesion segmentation. To tackle these issues, we introduce an enhanced U-shaped network that incorporates several novel features for precise, automated segmentation. Firstly, our model utilizes a convolution-based self-attention mechanism to establish long-range dependencies in feature maps, crucial for small dataset applications, accompanied by a soft thresholding method for noise reduction. Secondly, we employ multi-sized convolutional kernels to enrich feature processing, coupled with curvature calculations to accentuate edge details via a soft-attention approach. Thirdly, an advanced skip connection strategy is implemented in the UNet architecture, integrating information entropy to assess and utilize texture-rich channels, thereby improving semantic detail in the encoder before merging with decoder outputs. We validated our approach using a newly curated dataset, VPUSI (Vascular Plaques Ultrasound Images), alongside the established datasets, BUSI, TN3K and DDTI. Comparative experiments on these datasets show that our model outperforms existing state-of-the-art techniques in segmentation accuracy.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104054"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"US-Net: U-shaped network with Convolutional Attention Mechanism for ultrasound medical images\",\"authors\":\"Xiaoyu Xie , Pingping Liu , Yijun Lang , Zhenjie Guo , Zhongxi Yang , Yuhao Zhao\",\"doi\":\"10.1016/j.cag.2024.104054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasound imaging, characterized by low contrast, high noise, and interference from surrounding tissues, poses significant challenges in lesion segmentation. To tackle these issues, we introduce an enhanced U-shaped network that incorporates several novel features for precise, automated segmentation. Firstly, our model utilizes a convolution-based self-attention mechanism to establish long-range dependencies in feature maps, crucial for small dataset applications, accompanied by a soft thresholding method for noise reduction. Secondly, we employ multi-sized convolutional kernels to enrich feature processing, coupled with curvature calculations to accentuate edge details via a soft-attention approach. Thirdly, an advanced skip connection strategy is implemented in the UNet architecture, integrating information entropy to assess and utilize texture-rich channels, thereby improving semantic detail in the encoder before merging with decoder outputs. We validated our approach using a newly curated dataset, VPUSI (Vascular Plaques Ultrasound Images), alongside the established datasets, BUSI, TN3K and DDTI. Comparative experiments on these datasets show that our model outperforms existing state-of-the-art techniques in segmentation accuracy.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104054\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001894\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001894","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
超声成像的特点是对比度低、噪声大、周围组织干扰多,这给病变分割带来了巨大挑战。为了解决这些问题,我们引入了一种增强型 U 形网络,该网络结合了多种新功能,可实现精确的自动分割。首先,我们的模型利用基于卷积的自注意机制在特征图中建立长程依赖关系,这对小数据集应用至关重要,同时还采用了软阈值方法来降低噪声。其次,我们采用多大小卷积核来丰富特征处理,并结合曲率计算,通过软关注方法突出边缘细节。第三,在 UNet 架构中实施了先进的跳转连接策略,整合信息熵来评估和利用纹理丰富的通道,从而在与解码器输出合并之前改善编码器中的语义细节。我们使用了一个新开发的数据集 VPUSI(血管斑块超声图像),以及已有的数据集 BUSI、TN3K 和 DDTI,对我们的方法进行了验证。在这些数据集上进行的对比实验表明,我们的模型在分割准确性上优于现有的最先进技术。
US-Net: U-shaped network with Convolutional Attention Mechanism for ultrasound medical images
Ultrasound imaging, characterized by low contrast, high noise, and interference from surrounding tissues, poses significant challenges in lesion segmentation. To tackle these issues, we introduce an enhanced U-shaped network that incorporates several novel features for precise, automated segmentation. Firstly, our model utilizes a convolution-based self-attention mechanism to establish long-range dependencies in feature maps, crucial for small dataset applications, accompanied by a soft thresholding method for noise reduction. Secondly, we employ multi-sized convolutional kernels to enrich feature processing, coupled with curvature calculations to accentuate edge details via a soft-attention approach. Thirdly, an advanced skip connection strategy is implemented in the UNet architecture, integrating information entropy to assess and utilize texture-rich channels, thereby improving semantic detail in the encoder before merging with decoder outputs. We validated our approach using a newly curated dataset, VPUSI (Vascular Plaques Ultrasound Images), alongside the established datasets, BUSI, TN3K and DDTI. Comparative experiments on these datasets show that our model outperforms existing state-of-the-art techniques in segmentation accuracy.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.