{"title":"一般协变量模型的最小剖面海灵格距离估计","authors":"Bowei Ding , Rohana J. Karunamuni , Jingjing Wu","doi":"10.1016/j.csda.2024.108054","DOIUrl":null,"url":null,"abstract":"<div><p>Covariate models, such as polynomial regression models, generalized linear models, and heteroscedastic models, are widely used in statistical applications. The importance of such models in statistical analysis is abundantly clear by the ever-increasing rate at which articles on covariate models are appearing in the statistical literature. Because of their flexibility, covariate models are increasingly being exploited as a convenient way to model data that consist of both a response variable and one or more covariate variables that affect the outcome of the response variable. Efficient and robust estimates for broadly defined semiparametric covariate models are investigated, and for this purpose the minimum distance approach is employed. In general, minimum distance estimators are automatically robust with respect to the stability of the quantity being estimated. In particular, minimum Hellinger distance estimation for parametric models produces estimators that are asymptotically efficient at the model density and simultaneously possess excellent robustness properties. For semiparametric covariate models, the minimum Hellinger distance method is extended and a minimum profile Hellinger distance estimator is proposed. Its asymptotic properties such as consistency are studied, and its finite-sample performance and robustness are examined by using Monte Carlo simulations and three real data analyses. Additionally, a computing algorithm is developed to ease the computation of the estimator.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001385/pdfft?md5=cefa2d178122667194291a858ff4b934&pid=1-s2.0-S0167947324001385-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimum profile Hellinger distance estimation of general covariate models\",\"authors\":\"Bowei Ding , Rohana J. Karunamuni , Jingjing Wu\",\"doi\":\"10.1016/j.csda.2024.108054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covariate models, such as polynomial regression models, generalized linear models, and heteroscedastic models, are widely used in statistical applications. The importance of such models in statistical analysis is abundantly clear by the ever-increasing rate at which articles on covariate models are appearing in the statistical literature. Because of their flexibility, covariate models are increasingly being exploited as a convenient way to model data that consist of both a response variable and one or more covariate variables that affect the outcome of the response variable. Efficient and robust estimates for broadly defined semiparametric covariate models are investigated, and for this purpose the minimum distance approach is employed. In general, minimum distance estimators are automatically robust with respect to the stability of the quantity being estimated. In particular, minimum Hellinger distance estimation for parametric models produces estimators that are asymptotically efficient at the model density and simultaneously possess excellent robustness properties. For semiparametric covariate models, the minimum Hellinger distance method is extended and a minimum profile Hellinger distance estimator is proposed. Its asymptotic properties such as consistency are studied, and its finite-sample performance and robustness are examined by using Monte Carlo simulations and three real data analyses. Additionally, a computing algorithm is developed to ease the computation of the estimator.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001385/pdfft?md5=cefa2d178122667194291a858ff4b934&pid=1-s2.0-S0167947324001385-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001385\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001385","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Minimum profile Hellinger distance estimation of general covariate models
Covariate models, such as polynomial regression models, generalized linear models, and heteroscedastic models, are widely used in statistical applications. The importance of such models in statistical analysis is abundantly clear by the ever-increasing rate at which articles on covariate models are appearing in the statistical literature. Because of their flexibility, covariate models are increasingly being exploited as a convenient way to model data that consist of both a response variable and one or more covariate variables that affect the outcome of the response variable. Efficient and robust estimates for broadly defined semiparametric covariate models are investigated, and for this purpose the minimum distance approach is employed. In general, minimum distance estimators are automatically robust with respect to the stability of the quantity being estimated. In particular, minimum Hellinger distance estimation for parametric models produces estimators that are asymptotically efficient at the model density and simultaneously possess excellent robustness properties. For semiparametric covariate models, the minimum Hellinger distance method is extended and a minimum profile Hellinger distance estimator is proposed. Its asymptotic properties such as consistency are studied, and its finite-sample performance and robustness are examined by using Monte Carlo simulations and three real data analyses. Additionally, a computing algorithm is developed to ease the computation of the estimator.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.