Chen Li , Bo Liu , Qiaomu Zheng , Yi Li , Xinping Zhu , Yuan Fang , Qingxin Zhao , Zhengwu Jiang , Jiaqi Li
{"title":"不同钙硅比硅酸钙玻璃的碳化反应性以及与硅灰石的比较","authors":"Chen Li , Bo Liu , Qiaomu Zheng , Yi Li , Xinping Zhu , Yuan Fang , Qingxin Zhao , Zhengwu Jiang , Jiaqi Li","doi":"10.1016/j.cemconres.2024.107653","DOIUrl":null,"url":null,"abstract":"<div><p>Amorphous calcium (alumino) silicates are the main component of industrial byproducts (e.g., blast furnace slag and fly ash) and can be generated by grinding silicate minerals that are abundant in steel slag and carbonated calcium silicate binders. To promote the production of CO<sub>2</sub>-activated building material from diverse materials, this study investigated the carbonation of synthetic calcium silicate glasses, model compounds of these amorphous silicates. A dissolution-controlled carbonation mechanism was revealed, in contrast with a nucleation-controlled counterpart for the carbonation of wollastonite, a model compound of silicate minerals. The former mechanism is governed by the number of Q<sup>3</sup> species in the silica layers on carbonated particle surfaces serving as sites for ionic exchange. The latter is evidenced by well-aligned CaCO<sub>3</sub> nuclei precipitating on wollastonite particles under high CaCO<sub>3</sub> supersaturation. Overall, high Ca/Si ratios favor carbonation. At Ca/Si = 1, the calcium silicate glass shows faster carbonation kinetics than wollastonite at early ages.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"186 ","pages":"Article 107653"},"PeriodicalIF":10.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonation reactivity of calcium silicate glasses at various calcium to silicate ratios and comparison with wollastonite\",\"authors\":\"Chen Li , Bo Liu , Qiaomu Zheng , Yi Li , Xinping Zhu , Yuan Fang , Qingxin Zhao , Zhengwu Jiang , Jiaqi Li\",\"doi\":\"10.1016/j.cemconres.2024.107653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amorphous calcium (alumino) silicates are the main component of industrial byproducts (e.g., blast furnace slag and fly ash) and can be generated by grinding silicate minerals that are abundant in steel slag and carbonated calcium silicate binders. To promote the production of CO<sub>2</sub>-activated building material from diverse materials, this study investigated the carbonation of synthetic calcium silicate glasses, model compounds of these amorphous silicates. A dissolution-controlled carbonation mechanism was revealed, in contrast with a nucleation-controlled counterpart for the carbonation of wollastonite, a model compound of silicate minerals. The former mechanism is governed by the number of Q<sup>3</sup> species in the silica layers on carbonated particle surfaces serving as sites for ionic exchange. The latter is evidenced by well-aligned CaCO<sub>3</sub> nuclei precipitating on wollastonite particles under high CaCO<sub>3</sub> supersaturation. Overall, high Ca/Si ratios favor carbonation. At Ca/Si = 1, the calcium silicate glass shows faster carbonation kinetics than wollastonite at early ages.</p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"186 \",\"pages\":\"Article 107653\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002345\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002345","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Carbonation reactivity of calcium silicate glasses at various calcium to silicate ratios and comparison with wollastonite
Amorphous calcium (alumino) silicates are the main component of industrial byproducts (e.g., blast furnace slag and fly ash) and can be generated by grinding silicate minerals that are abundant in steel slag and carbonated calcium silicate binders. To promote the production of CO2-activated building material from diverse materials, this study investigated the carbonation of synthetic calcium silicate glasses, model compounds of these amorphous silicates. A dissolution-controlled carbonation mechanism was revealed, in contrast with a nucleation-controlled counterpart for the carbonation of wollastonite, a model compound of silicate minerals. The former mechanism is governed by the number of Q3 species in the silica layers on carbonated particle surfaces serving as sites for ionic exchange. The latter is evidenced by well-aligned CaCO3 nuclei precipitating on wollastonite particles under high CaCO3 supersaturation. Overall, high Ca/Si ratios favor carbonation. At Ca/Si = 1, the calcium silicate glass shows faster carbonation kinetics than wollastonite at early ages.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.