{"title":"蝗虫的表型可塑性:迁徙与繁殖之间的权衡。","authors":"Xiaojiao Guo, Le Kang","doi":"10.1146/annurev-ento-013124-124333","DOIUrl":null,"url":null,"abstract":"<p><p>Locusts exhibit phenotypic plasticity in response to population density changes, with distinct phenotypes in the solitary and gregarious phases. In the past decade, many studies have revealed the molecular mechanisms underlying phase changes, which include the change of body coloration, pheromones, behavior, flight, fecundity, immunity, and aging. Our understanding of the molecular mechanisms related to these phenotypic differences has expanded in breadth and depth with the decoding of the locust genome, involving transcriptional, post-transcriptional, translational, and epigenetic regulation. Large-scale regulation networks composed of genes and noncoding RNAs reflect the systematic modifications of the locust phase transition in response to environmental changes. Gene manipulation techniques have verified the functions of specific genes and related pathways in phase changes. This review highlights the latest advances in studies of locust phase changes and suggests that the divergence of energy and metabolism allocation in gregarious and solitary locusts is an adaptive strategy for long-distance migration and local reproduction, respectively. Finally, we propose future research directions and discuss emerging questions in the area of phenotypic plasticity of locusts.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":null,"pages":null},"PeriodicalIF":15.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotypic Plasticity in Locusts: Trade-Off Between Migration and Reproduction.\",\"authors\":\"Xiaojiao Guo, Le Kang\",\"doi\":\"10.1146/annurev-ento-013124-124333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Locusts exhibit phenotypic plasticity in response to population density changes, with distinct phenotypes in the solitary and gregarious phases. In the past decade, many studies have revealed the molecular mechanisms underlying phase changes, which include the change of body coloration, pheromones, behavior, flight, fecundity, immunity, and aging. Our understanding of the molecular mechanisms related to these phenotypic differences has expanded in breadth and depth with the decoding of the locust genome, involving transcriptional, post-transcriptional, translational, and epigenetic regulation. Large-scale regulation networks composed of genes and noncoding RNAs reflect the systematic modifications of the locust phase transition in response to environmental changes. Gene manipulation techniques have verified the functions of specific genes and related pathways in phase changes. This review highlights the latest advances in studies of locust phase changes and suggests that the divergence of energy and metabolism allocation in gregarious and solitary locusts is an adaptive strategy for long-distance migration and local reproduction, respectively. Finally, we propose future research directions and discuss emerging questions in the area of phenotypic plasticity of locusts.</p>\",\"PeriodicalId\":8001,\"journal\":{\"name\":\"Annual review of entomology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-ento-013124-124333\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-ento-013124-124333","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Phenotypic Plasticity in Locusts: Trade-Off Between Migration and Reproduction.
Locusts exhibit phenotypic plasticity in response to population density changes, with distinct phenotypes in the solitary and gregarious phases. In the past decade, many studies have revealed the molecular mechanisms underlying phase changes, which include the change of body coloration, pheromones, behavior, flight, fecundity, immunity, and aging. Our understanding of the molecular mechanisms related to these phenotypic differences has expanded in breadth and depth with the decoding of the locust genome, involving transcriptional, post-transcriptional, translational, and epigenetic regulation. Large-scale regulation networks composed of genes and noncoding RNAs reflect the systematic modifications of the locust phase transition in response to environmental changes. Gene manipulation techniques have verified the functions of specific genes and related pathways in phase changes. This review highlights the latest advances in studies of locust phase changes and suggests that the divergence of energy and metabolism allocation in gregarious and solitary locusts is an adaptive strategy for long-distance migration and local reproduction, respectively. Finally, we propose future research directions and discuss emerging questions in the area of phenotypic plasticity of locusts.
期刊介绍:
The Annual Review of Entomology, a publication dating back to 1956, offers comprehensive reviews of significant developments in the field of entomology.The scope of coverage spans various areas, including:biochemistry and physiology, morphology and development, behavior and neuroscience, ecology, agricultural entomology and pest management, biological control, forest entomology, acarines and other arthropods, medical and veterinary entomology, pathology, vectors of plant disease, genetics, genomics, and systematics, evolution, and biogeography.