源自单核细胞的 Olfr2 阳性巨噬细胞在原位增殖,并呈现出促炎性泡沫样表型。

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Research Pub Date : 2024-11-05 DOI:10.1093/cvr/cvae153
Sujit Silas Armstrong Suthahar, Felix Sebastian Nettersheim, Ahmad Alimadadi, Erpei Wang, Monica Billitti, Natalya Resto-Trujillo, Payel Roy, Catherine C Hedrick, Klaus Ley, Marco Orecchioni
{"title":"源自单核细胞的 Olfr2 阳性巨噬细胞在原位增殖,并呈现出促炎性泡沫样表型。","authors":"Sujit Silas Armstrong Suthahar, Felix Sebastian Nettersheim, Ahmad Alimadadi, Erpei Wang, Monica Billitti, Natalya Resto-Trujillo, Payel Roy, Catherine C Hedrick, Klaus Ley, Marco Orecchioni","doi":"10.1093/cvr/cvae153","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Olfactory receptor 2 (Olfr2) has been identified in a minimum of 30% of vascular macrophages, and its depletion was shown to reduce atherosclerosis progression. Mononuclear phagocytes, including monocytes and macrophages within the vessel wall, are major players in atherosclerosis. Single-cell RNA sequencing studies revealed that atherosclerotic artery walls encompass several monocytes and vascular macrophages, defining at least nine distinct subsets potentially serving diverse functions in disease progression. This study investigates the functional phenotype and ontogeny of Olfr2-expressing vascular macrophages in atherosclerosis.</p><p><strong>Methods and results: </strong>Olfr2+ macrophages rapidly increase in Apoe-/- mice's aorta when fed a Western diet (WD). Mass cytometry showed that Olfr2+ cells are clustered within the CD64 high population and enriched for CD11c and Ccr2 markers. Olfr2+ macrophages express many pro-inflammatory cytokines, including Il1b, Il6, Il12, and Il23, and chemokines, including Ccl5, Cx3cl1, Cxcl9, and Ccl22. By extracting differentially expressed genes from bulk RNA sequencing (RNA-seq) of Olfr2+ vs. Olfr2- macrophages, we defined a signature that significantly mapped to single-cell data of plaque myeloid cells, including monocytes, subendothelial MacAir, and Trem2Gpnmb foamy macrophages. By adoptive transfer experiments, we identified that Olfr2 competent monocytes from CD45.1Apoe-/-Olfr2+/+ mice transferred into CD45.2Apoe-/-Olfr2-/- recipient mice fed WD for 12 weeks, accumulate in the atherosclerotic aorta wall already at 72 h, and differentiate in macrophages. Olfr2+ macrophages showed significantly increased BrdU incorporation compared to Olfr2- macrophages. Flow cytometry confirmed that at least 50% of aortic Olfr2+ macrophages are positive for BODIPY staining and have increased expression of both tumour necrosis factor and interleukin 6 compared to Olfr2- macrophages. Gene set enrichment analysis of the Olfr2+ macrophage signature revealed a similar enrichment pattern in human atherosclerotic plaques, particularly within foamy/TREM2hi-Mφ and monocytes.</p><p><strong>Conclusions: </strong>In summary, we conclude that Olfr2+ macrophages in the aorta originate from monocytes and can accumulate at the early stages of disease progression. These cells can undergo differentiation into MacAir and Trem2Gpnmb foamy macrophages, exhibiting proliferative and pro-inflammatory potentials. This dynamic behaviour positions them as key influencers in shaping the myeloid landscape within the atherosclerotic plaque.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Olfr2-positive macrophages originate from monocytes proliferate in situ and present a pro-inflammatory foamy-like phenotype.\",\"authors\":\"Sujit Silas Armstrong Suthahar, Felix Sebastian Nettersheim, Ahmad Alimadadi, Erpei Wang, Monica Billitti, Natalya Resto-Trujillo, Payel Roy, Catherine C Hedrick, Klaus Ley, Marco Orecchioni\",\"doi\":\"10.1093/cvr/cvae153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Olfactory receptor 2 (Olfr2) has been identified in a minimum of 30% of vascular macrophages, and its depletion was shown to reduce atherosclerosis progression. Mononuclear phagocytes, including monocytes and macrophages within the vessel wall, are major players in atherosclerosis. Single-cell RNA sequencing studies revealed that atherosclerotic artery walls encompass several monocytes and vascular macrophages, defining at least nine distinct subsets potentially serving diverse functions in disease progression. This study investigates the functional phenotype and ontogeny of Olfr2-expressing vascular macrophages in atherosclerosis.</p><p><strong>Methods and results: </strong>Olfr2+ macrophages rapidly increase in Apoe-/- mice's aorta when fed a Western diet (WD). Mass cytometry showed that Olfr2+ cells are clustered within the CD64 high population and enriched for CD11c and Ccr2 markers. Olfr2+ macrophages express many pro-inflammatory cytokines, including Il1b, Il6, Il12, and Il23, and chemokines, including Ccl5, Cx3cl1, Cxcl9, and Ccl22. By extracting differentially expressed genes from bulk RNA sequencing (RNA-seq) of Olfr2+ vs. Olfr2- macrophages, we defined a signature that significantly mapped to single-cell data of plaque myeloid cells, including monocytes, subendothelial MacAir, and Trem2Gpnmb foamy macrophages. By adoptive transfer experiments, we identified that Olfr2 competent monocytes from CD45.1Apoe-/-Olfr2+/+ mice transferred into CD45.2Apoe-/-Olfr2-/- recipient mice fed WD for 12 weeks, accumulate in the atherosclerotic aorta wall already at 72 h, and differentiate in macrophages. Olfr2+ macrophages showed significantly increased BrdU incorporation compared to Olfr2- macrophages. Flow cytometry confirmed that at least 50% of aortic Olfr2+ macrophages are positive for BODIPY staining and have increased expression of both tumour necrosis factor and interleukin 6 compared to Olfr2- macrophages. Gene set enrichment analysis of the Olfr2+ macrophage signature revealed a similar enrichment pattern in human atherosclerotic plaques, particularly within foamy/TREM2hi-Mφ and monocytes.</p><p><strong>Conclusions: </strong>In summary, we conclude that Olfr2+ macrophages in the aorta originate from monocytes and can accumulate at the early stages of disease progression. These cells can undergo differentiation into MacAir and Trem2Gpnmb foamy macrophages, exhibiting proliferative and pro-inflammatory potentials. This dynamic behaviour positions them as key influencers in shaping the myeloid landscape within the atherosclerotic plaque.</p>\",\"PeriodicalId\":9638,\"journal\":{\"name\":\"Cardiovascular Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cvr/cvae153\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae153","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:在至少 30% 的血管巨噬细胞中发现了嗅觉受体 2 (Olfr2),研究表明,消耗嗅觉受体 2 (Olfr2)可减少动脉粥样硬化的进展。单核吞噬细胞,包括血管壁内的单核细胞和巨噬细胞,是动脉粥样硬化的主要参与者。单细胞 RNA 测序研究显示,动脉粥样硬化的动脉壁包含多种单核细胞和血管巨噬细胞,至少有九个不同的亚群可能在疾病进展中发挥不同的功能。本研究调查了动脉粥样硬化中表达 Olfr2 的血管巨噬细胞的功能表型和本体:Olfr2+巨噬细胞在摄入西式饮食(WD)的载脂蛋白/-小鼠主动脉中迅速增加。质谱仪显示,Olfr2+细胞聚集在CD64高的细胞群中,并富含CD11c和Ccr2标记。Olfr2+巨噬细胞表达许多促炎细胞因子,包括Il1b、Il6、Il12和Il23,以及趋化因子,包括Ccl5、Cx3cl1、Cxcl9和Ccl22。通过从Olfr2+与Olfr2-巨噬细胞的批量RNA测序(RNA-seq)中提取差异表达基因,我们定义了一个特征,该特征与斑块髓系细胞(包括单核细胞、内皮下MacAir和Trem2Gpnmb泡沫巨噬细胞)的单细胞数据显著映射。通过采用性转移实验,我们发现将来自 CD45.1Apoe-/-Olfr2+/+ 小鼠的有 Olfr2 能力的单核细胞转移到喂养 WD 12 周的 CD45.2Apoe-/-Olfr2-/- 受体小鼠体内,72 小时后就会在动脉粥样硬化的主动脉壁上聚集,并分化为巨噬细胞。与Olfr2-巨噬细胞相比,Olfr2+巨噬细胞的BrdU结合率明显增加。流式细胞术证实,与Olfr2-巨噬细胞相比,至少50%的主动脉Olfr2+巨噬细胞的BODIPY染色呈阳性,肿瘤坏死因子和白细胞介素6的表达量也有所增加。对Olfr2+巨噬细胞特征的基因组富集分析显示,人类动脉粥样硬化斑块中也有类似的富集模式,特别是在泡沫/TREM2hi-Mφ和单核细胞中:综上所述,我们得出结论:主动脉中的Olfr2+巨噬细胞起源于单核细胞,可在疾病进展的早期阶段聚集。这些细胞可分化为 MacAir 和 Trem2Gpnmb 泡沫巨噬细胞,表现出增殖和促炎潜能。这种动态行为使它们成为塑造动脉粥样硬化斑块内髓系形态的关键影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Olfr2-positive macrophages originate from monocytes proliferate in situ and present a pro-inflammatory foamy-like phenotype.

Aims: Olfactory receptor 2 (Olfr2) has been identified in a minimum of 30% of vascular macrophages, and its depletion was shown to reduce atherosclerosis progression. Mononuclear phagocytes, including monocytes and macrophages within the vessel wall, are major players in atherosclerosis. Single-cell RNA sequencing studies revealed that atherosclerotic artery walls encompass several monocytes and vascular macrophages, defining at least nine distinct subsets potentially serving diverse functions in disease progression. This study investigates the functional phenotype and ontogeny of Olfr2-expressing vascular macrophages in atherosclerosis.

Methods and results: Olfr2+ macrophages rapidly increase in Apoe-/- mice's aorta when fed a Western diet (WD). Mass cytometry showed that Olfr2+ cells are clustered within the CD64 high population and enriched for CD11c and Ccr2 markers. Olfr2+ macrophages express many pro-inflammatory cytokines, including Il1b, Il6, Il12, and Il23, and chemokines, including Ccl5, Cx3cl1, Cxcl9, and Ccl22. By extracting differentially expressed genes from bulk RNA sequencing (RNA-seq) of Olfr2+ vs. Olfr2- macrophages, we defined a signature that significantly mapped to single-cell data of plaque myeloid cells, including monocytes, subendothelial MacAir, and Trem2Gpnmb foamy macrophages. By adoptive transfer experiments, we identified that Olfr2 competent monocytes from CD45.1Apoe-/-Olfr2+/+ mice transferred into CD45.2Apoe-/-Olfr2-/- recipient mice fed WD for 12 weeks, accumulate in the atherosclerotic aorta wall already at 72 h, and differentiate in macrophages. Olfr2+ macrophages showed significantly increased BrdU incorporation compared to Olfr2- macrophages. Flow cytometry confirmed that at least 50% of aortic Olfr2+ macrophages are positive for BODIPY staining and have increased expression of both tumour necrosis factor and interleukin 6 compared to Olfr2- macrophages. Gene set enrichment analysis of the Olfr2+ macrophage signature revealed a similar enrichment pattern in human atherosclerotic plaques, particularly within foamy/TREM2hi-Mφ and monocytes.

Conclusions: In summary, we conclude that Olfr2+ macrophages in the aorta originate from monocytes and can accumulate at the early stages of disease progression. These cells can undergo differentiation into MacAir and Trem2Gpnmb foamy macrophages, exhibiting proliferative and pro-inflammatory potentials. This dynamic behaviour positions them as key influencers in shaping the myeloid landscape within the atherosclerotic plaque.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
期刊最新文献
miR-24-3p secreted as extracellular vesicle cargo by cardiomyocytes inhibits fibrosis in human cardiac microtissues Correction to: Modulation of lncRNA links endothelial glycocalyx to vascular dysfunction of tyrosine kinase inhibitor. Loss of Cavin-2 destabilizes phosphatase and tensin homologue and enhances Akt signalling pathway in cardiomyocytes. SCUBE2 regulates adherens junction dynamics and vascular barrier function during inflammation. Intraplatelet miRNA-126 regulates thrombosis and its reduction contributes to platelet inhibition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1