Po-Hsuan Jeng, Chien-Yi Yang, Tien-Ru Huang, Chung-Feng Kuo, Shao-Cheng Liu
{"title":"利用人工智能精准诊断扁桃体炎:内窥镜分析的革命性方法。","authors":"Po-Hsuan Jeng, Chien-Yi Yang, Tien-Ru Huang, Chung-Feng Kuo, Shao-Cheng Liu","doi":"10.1007/s00405-024-08938-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diagnosing and treating tonsillitis pose no significant challenge for otolaryngologists; however, it can increase the infection risk for healthcare professionals amidst the coronavirus pandemic. In recent years, with the advancement of artificial intelligence (AI), its application in medical imaging has also thrived. This research is to identify the optimal convolutional neural network (CNN) algorithm for accurate diagnosis of tonsillitis and early precision treatment.</p><p><strong>Methods: </strong>Semi-supervised learning with pseudo-labels used for self-training was adopted to train our CNN, with the algorithm including UNet, PSPNet, and FPN. A total of 485 pharyngoscopic images from 485 participants were included, comprising healthy individuals (133 cases), patients with the common cold (295 cases), and patients with tonsillitis (57 cases). Both color and texture features from 485 images are extracted for analysis.</p><p><strong>Results: </strong>UNet outperformed PSPNet and FPN in accurately segmenting oropharyngeal anatomy automatically, with average Dice coefficient of 97.74% and a pixel accuracy of 98.12%, making it suitable for enhancing the diagnosis of tonsillitis. The normal tonsils generally have more uniform and smooth textures and have pinkish color, similar to the surrounding mucosal tissues, while tonsillitis, particularly the antibiotic-required type, shows white or yellowish pus-filled spots or patches, and shows more granular or lumpy texture in contrast, indicating inflammation and changes in tissue structure. After training with 485 cases, our algorithm with UNet achieved accuracy rates of 93.75%, 97.1%, and 91.67% in differentiating the three tonsil groups, demonstrating excellent results.</p><p><strong>Conclusion: </strong>Our research highlights the potential of using UNet for fully automated semantic segmentation of oropharyngeal structures, which aids in subsequent feature extraction, machine learning, and enables accurate AI diagnosis of tonsillitis. This innovation shows promise for enhancing both the accuracy and speed of tonsillitis assessments.</p>","PeriodicalId":11952,"journal":{"name":"European Archives of Oto-Rhino-Laryngology","volume":" ","pages":"6555-6563"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing AI for precision tonsillitis diagnosis: a revolutionary approach in endoscopic analysis.\",\"authors\":\"Po-Hsuan Jeng, Chien-Yi Yang, Tien-Ru Huang, Chung-Feng Kuo, Shao-Cheng Liu\",\"doi\":\"10.1007/s00405-024-08938-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diagnosing and treating tonsillitis pose no significant challenge for otolaryngologists; however, it can increase the infection risk for healthcare professionals amidst the coronavirus pandemic. In recent years, with the advancement of artificial intelligence (AI), its application in medical imaging has also thrived. This research is to identify the optimal convolutional neural network (CNN) algorithm for accurate diagnosis of tonsillitis and early precision treatment.</p><p><strong>Methods: </strong>Semi-supervised learning with pseudo-labels used for self-training was adopted to train our CNN, with the algorithm including UNet, PSPNet, and FPN. A total of 485 pharyngoscopic images from 485 participants were included, comprising healthy individuals (133 cases), patients with the common cold (295 cases), and patients with tonsillitis (57 cases). Both color and texture features from 485 images are extracted for analysis.</p><p><strong>Results: </strong>UNet outperformed PSPNet and FPN in accurately segmenting oropharyngeal anatomy automatically, with average Dice coefficient of 97.74% and a pixel accuracy of 98.12%, making it suitable for enhancing the diagnosis of tonsillitis. The normal tonsils generally have more uniform and smooth textures and have pinkish color, similar to the surrounding mucosal tissues, while tonsillitis, particularly the antibiotic-required type, shows white or yellowish pus-filled spots or patches, and shows more granular or lumpy texture in contrast, indicating inflammation and changes in tissue structure. After training with 485 cases, our algorithm with UNet achieved accuracy rates of 93.75%, 97.1%, and 91.67% in differentiating the three tonsil groups, demonstrating excellent results.</p><p><strong>Conclusion: </strong>Our research highlights the potential of using UNet for fully automated semantic segmentation of oropharyngeal structures, which aids in subsequent feature extraction, machine learning, and enables accurate AI diagnosis of tonsillitis. This innovation shows promise for enhancing both the accuracy and speed of tonsillitis assessments.</p>\",\"PeriodicalId\":11952,\"journal\":{\"name\":\"European Archives of Oto-Rhino-Laryngology\",\"volume\":\" \",\"pages\":\"6555-6563\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Archives of Oto-Rhino-Laryngology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00405-024-08938-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Oto-Rhino-Laryngology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00405-024-08938-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
Harnessing AI for precision tonsillitis diagnosis: a revolutionary approach in endoscopic analysis.
Background: Diagnosing and treating tonsillitis pose no significant challenge for otolaryngologists; however, it can increase the infection risk for healthcare professionals amidst the coronavirus pandemic. In recent years, with the advancement of artificial intelligence (AI), its application in medical imaging has also thrived. This research is to identify the optimal convolutional neural network (CNN) algorithm for accurate diagnosis of tonsillitis and early precision treatment.
Methods: Semi-supervised learning with pseudo-labels used for self-training was adopted to train our CNN, with the algorithm including UNet, PSPNet, and FPN. A total of 485 pharyngoscopic images from 485 participants were included, comprising healthy individuals (133 cases), patients with the common cold (295 cases), and patients with tonsillitis (57 cases). Both color and texture features from 485 images are extracted for analysis.
Results: UNet outperformed PSPNet and FPN in accurately segmenting oropharyngeal anatomy automatically, with average Dice coefficient of 97.74% and a pixel accuracy of 98.12%, making it suitable for enhancing the diagnosis of tonsillitis. The normal tonsils generally have more uniform and smooth textures and have pinkish color, similar to the surrounding mucosal tissues, while tonsillitis, particularly the antibiotic-required type, shows white or yellowish pus-filled spots or patches, and shows more granular or lumpy texture in contrast, indicating inflammation and changes in tissue structure. After training with 485 cases, our algorithm with UNet achieved accuracy rates of 93.75%, 97.1%, and 91.67% in differentiating the three tonsil groups, demonstrating excellent results.
Conclusion: Our research highlights the potential of using UNet for fully automated semantic segmentation of oropharyngeal structures, which aids in subsequent feature extraction, machine learning, and enables accurate AI diagnosis of tonsillitis. This innovation shows promise for enhancing both the accuracy and speed of tonsillitis assessments.
期刊介绍:
Official Journal of
European Union of Medical Specialists – ORL Section and Board
Official Journal of Confederation of European Oto-Rhino-Laryngology Head and Neck Surgery
"European Archives of Oto-Rhino-Laryngology" publishes original clinical reports and clinically relevant experimental studies, as well as short communications presenting new results of special interest. With peer review by a respected international editorial board and prompt English-language publication, the journal provides rapid dissemination of information by authors from around the world. This particular feature makes it the journal of choice for readers who want to be informed about the continuing state of the art concerning basic sciences and the diagnosis and management of diseases of the head and neck on an international level.
European Archives of Oto-Rhino-Laryngology was founded in 1864 as "Archiv für Ohrenheilkunde" by A. von Tröltsch, A. Politzer and H. Schwartze.