{"title":"通过局部相互作用一致性整合相似性,并通过矩阵因式分解优化曲线下面积度量,用于药物-靶点相互作用预测。","authors":"Bin Liu, Grigorios Tsoumakas","doi":"10.1109/TCBB.2024.3453499","DOIUrl":null,"url":null,"abstract":"<p><p>In drug discovery, identifying drug-target interactions (DTIs) via experimental approaches is a tedious and expensive procedure. Computational methods efficiently predict DTIs and recommend a small part of potential interacting pairs for further experimental confirmation, accelerating the drug discovery process. Although fusing heterogeneous drug and target similarities can improve the prediction ability, the existing similarity combination methods ignore the interaction consistency for neighbour entities. Furthermore, area under the precision-recall curve (AUPR) and area under the receiver operating characteristic curve (AUC) are two widely used evaluation metrics in DTI prediction. However, the two metrics are seldom considered as losses within existing DTI prediction methods. We propose a local interaction consistency (LIC) aware similarity integration method to fuse vital information from diverse views for DTI prediction models. Furthermore, we propose two matrix factorization (MF) methods that optimize AUPR and AUC using convex surrogate losses respectively, and then develop an ensemble MF approach that takes advantage of the two area under the curve metrics by combining the two single metric based MF models. Experimental results under different prediction settings show that the proposed methods outperform various competitors in terms of the metric(s) they optimize and are reliable in discovering potential new DTIs.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Similarities Via Local Interaction Consistency and Optimizing Area Under the Curve Measures Via Matrix Factorization for Drug-Target Interaction Prediction.\",\"authors\":\"Bin Liu, Grigorios Tsoumakas\",\"doi\":\"10.1109/TCBB.2024.3453499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In drug discovery, identifying drug-target interactions (DTIs) via experimental approaches is a tedious and expensive procedure. Computational methods efficiently predict DTIs and recommend a small part of potential interacting pairs for further experimental confirmation, accelerating the drug discovery process. Although fusing heterogeneous drug and target similarities can improve the prediction ability, the existing similarity combination methods ignore the interaction consistency for neighbour entities. Furthermore, area under the precision-recall curve (AUPR) and area under the receiver operating characteristic curve (AUC) are two widely used evaluation metrics in DTI prediction. However, the two metrics are seldom considered as losses within existing DTI prediction methods. We propose a local interaction consistency (LIC) aware similarity integration method to fuse vital information from diverse views for DTI prediction models. Furthermore, we propose two matrix factorization (MF) methods that optimize AUPR and AUC using convex surrogate losses respectively, and then develop an ensemble MF approach that takes advantage of the two area under the curve metrics by combining the two single metric based MF models. Experimental results under different prediction settings show that the proposed methods outperform various competitors in terms of the metric(s) they optimize and are reliable in discovering potential new DTIs.</p>\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TCBB.2024.3453499\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3453499","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integrating Similarities Via Local Interaction Consistency and Optimizing Area Under the Curve Measures Via Matrix Factorization for Drug-Target Interaction Prediction.
In drug discovery, identifying drug-target interactions (DTIs) via experimental approaches is a tedious and expensive procedure. Computational methods efficiently predict DTIs and recommend a small part of potential interacting pairs for further experimental confirmation, accelerating the drug discovery process. Although fusing heterogeneous drug and target similarities can improve the prediction ability, the existing similarity combination methods ignore the interaction consistency for neighbour entities. Furthermore, area under the precision-recall curve (AUPR) and area under the receiver operating characteristic curve (AUC) are two widely used evaluation metrics in DTI prediction. However, the two metrics are seldom considered as losses within existing DTI prediction methods. We propose a local interaction consistency (LIC) aware similarity integration method to fuse vital information from diverse views for DTI prediction models. Furthermore, we propose two matrix factorization (MF) methods that optimize AUPR and AUC using convex surrogate losses respectively, and then develop an ensemble MF approach that takes advantage of the two area under the curve metrics by combining the two single metric based MF models. Experimental results under different prediction settings show that the proposed methods outperform various competitors in terms of the metric(s) they optimize and are reliable in discovering potential new DTIs.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system