Mohadeseh Hasanpourghadi, Mikhail Novikov, Robert Ambrose, Arezki Chekaoui, Dakota Newman, ZhiQuan Xiang, Andrew D Luber, Sue L Currie, XiangYang Zhou, Hildegund Cj Ertl
{"title":"含有检查点修饰剂的治疗性乙型肝炎病毒疫苗可增强 CD8+ T 细胞和抗病毒反应。","authors":"Mohadeseh Hasanpourghadi, Mikhail Novikov, Robert Ambrose, Arezki Chekaoui, Dakota Newman, ZhiQuan Xiang, Andrew D Luber, Sue L Currie, XiangYang Zhou, Hildegund Cj Ertl","doi":"10.1172/jci.insight.181067","DOIUrl":null,"url":null,"abstract":"<p><p>In patients who progress from acute hepatitis B virus (HBV) infection to a chronic HBV (CHB) infection, CD8+ T cells fail to eliminate the virus and become impaired. A functional cure of CHB likely requires CD8+ T cell responses different from those induced by the infection. Here we report preclinical immunogenicity and efficacy of an HBV therapeutic vaccine that includes herpes simplex virus (HSV) glycoprotein D (gD), a checkpoint modifier of early T cell activation, that augments CD8+ T cell responses. The vaccine is based on a chimpanzee adenovirus serotype 6 (AdC6) vector, called AdC6-gDHBV2, which targets conserved and highly immunogenic regions of the viral polymerase and core antigens fused to HSV gD. The vaccine was tested with and without gD in mice for immunogenicity, and in an AAV8-1.3HBV vector model of antiviral efficacy. The vaccine encoding the HBV antigens within gD stimulates potent and broad CD8+ T cell responses. In a surrogate model of HBV infection, a single intramuscular injection achieved pronounced and sustained declines of circulating HBV DNA copies and HBV surface antigen; both inversely correlated with HBV-specific CD8+ T cell frequencies in spleen and liver.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A therapeutic HBV vaccine containing a checkpoint modifier enhances CD8+ T cell and antiviral responses.\",\"authors\":\"Mohadeseh Hasanpourghadi, Mikhail Novikov, Robert Ambrose, Arezki Chekaoui, Dakota Newman, ZhiQuan Xiang, Andrew D Luber, Sue L Currie, XiangYang Zhou, Hildegund Cj Ertl\",\"doi\":\"10.1172/jci.insight.181067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In patients who progress from acute hepatitis B virus (HBV) infection to a chronic HBV (CHB) infection, CD8+ T cells fail to eliminate the virus and become impaired. A functional cure of CHB likely requires CD8+ T cell responses different from those induced by the infection. Here we report preclinical immunogenicity and efficacy of an HBV therapeutic vaccine that includes herpes simplex virus (HSV) glycoprotein D (gD), a checkpoint modifier of early T cell activation, that augments CD8+ T cell responses. The vaccine is based on a chimpanzee adenovirus serotype 6 (AdC6) vector, called AdC6-gDHBV2, which targets conserved and highly immunogenic regions of the viral polymerase and core antigens fused to HSV gD. The vaccine was tested with and without gD in mice for immunogenicity, and in an AAV8-1.3HBV vector model of antiviral efficacy. The vaccine encoding the HBV antigens within gD stimulates potent and broad CD8+ T cell responses. In a surrogate model of HBV infection, a single intramuscular injection achieved pronounced and sustained declines of circulating HBV DNA copies and HBV surface antigen; both inversely correlated with HBV-specific CD8+ T cell frequencies in spleen and liver.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.181067\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.181067","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
在从急性乙型肝炎病毒(HBV)感染发展为慢性 HBV(CHB)感染的患者中,CD8+ T 细胞无法清除病毒并受损。慢性乙型肝炎的功能性治愈可能需要与感染诱导的CD8+ T细胞反应不同的新的高功能CD8+ T细胞反应。在此,我们报告了一种 HBV 治疗性疫苗的临床前免疫原性和疗效,该疫苗包括单纯疱疹病毒 (HSV) 糖蛋白 D (gD),这是一种早期 T 细胞活化的检查点调节剂,可增强、扩大和延长 CD8+ T 细胞应答。我们开发了一种基于黑猩猩腺病毒血清型 6 (AdC6) 载体的治疗性 HBV 疫苗,称为 AdC6-gDHBV2,其靶标是病毒聚合酶 (pol) 的保守和高免疫原性区域以及融合到 HSV gD 中的核心抗原。该疫苗在小鼠体内进行了含 gD 和不含 gD 的免疫原性测试,并在腺相关病毒 (AAV)8-1.3HBV 载体模型中进行了抗病毒效力测试。在 gD 中编码 HBV 抗原的疫苗可激发强效、广泛的 CD8+ T 细胞反应。在代理 HBV 感染模型中,单次肌肉注射 AdC6-gDHBV2 可使循环 HBV DNA 拷贝(cps)和 HBV 表面抗原(HBsAg)显著持续下降;两者均与脾脏和肝脏中的 HBV 特异性 CD8+ T 细胞频率成反比。AdC6-gDHBV2 是首个单独使用就能显著降低 HBV 基因组拷贝和 HBsAg 水平的治疗性疫苗,即使在感染后数月才接种疫苗也是如此。
A therapeutic HBV vaccine containing a checkpoint modifier enhances CD8+ T cell and antiviral responses.
In patients who progress from acute hepatitis B virus (HBV) infection to a chronic HBV (CHB) infection, CD8+ T cells fail to eliminate the virus and become impaired. A functional cure of CHB likely requires CD8+ T cell responses different from those induced by the infection. Here we report preclinical immunogenicity and efficacy of an HBV therapeutic vaccine that includes herpes simplex virus (HSV) glycoprotein D (gD), a checkpoint modifier of early T cell activation, that augments CD8+ T cell responses. The vaccine is based on a chimpanzee adenovirus serotype 6 (AdC6) vector, called AdC6-gDHBV2, which targets conserved and highly immunogenic regions of the viral polymerase and core antigens fused to HSV gD. The vaccine was tested with and without gD in mice for immunogenicity, and in an AAV8-1.3HBV vector model of antiviral efficacy. The vaccine encoding the HBV antigens within gD stimulates potent and broad CD8+ T cell responses. In a surrogate model of HBV infection, a single intramuscular injection achieved pronounced and sustained declines of circulating HBV DNA copies and HBV surface antigen; both inversely correlated with HBV-specific CD8+ T cell frequencies in spleen and liver.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.