{"title":"通过动态核偏振增强魔角旋转 NMR 阐明人 Argonaute-2 内 microRNA-34a 的组织结构。","authors":"Rubin Dasgupta, Walter Becker, Katja Petzold","doi":"10.1093/nar/gkae744","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding mRNA regulation by microRNA (miR) relies on the structural understanding of the RNA-induced silencing complex (RISC). Here, we elucidate the structural organisation of miR-34a, which is de-regulated in various cancers, in human Argonaute-2 (hAgo2), the effector protein in RISC. This analysis employs guanosine-specific isotopic labelling and dynamic nuclear polarisation (DNP)-enhanced Magic Angle Spinning (MAS) NMR. Homonuclear correlation experiments revealed that the non-A-form helical conformation of miR-34a increases when incorporated into hAgo2 and subsequently bound to SIRT1 mRNA compared to the free miR-34a or the free mRNA:miR duplex. The C8-C1' correlation provided a nucleotide-specific distribution of C2'- and C3'-endo sugar puckering, revealing the capture of diverse dynamic conformations upon freezing. Predominantly C3'-endo puckering was observed for the seed region, while C2'-endo conformation was found in the central region, with a mixture of both conformations elsewhere. These observations provide insights into the molecular dynamics underlying miR-mediated mRNA regulation and demonstrate that experiments conducted under cryogenic conditions, such as at 90 K, can capture and reveal frozen dynamic states, using methods like DNP-enhanced MAS NMR or Cryo-Electron Microscopy.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514488/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidating microRNA-34a organisation within human Argonaute-2 by dynamic nuclear polarisation-enhanced magic angle spinning NMR.\",\"authors\":\"Rubin Dasgupta, Walter Becker, Katja Petzold\",\"doi\":\"10.1093/nar/gkae744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding mRNA regulation by microRNA (miR) relies on the structural understanding of the RNA-induced silencing complex (RISC). Here, we elucidate the structural organisation of miR-34a, which is de-regulated in various cancers, in human Argonaute-2 (hAgo2), the effector protein in RISC. This analysis employs guanosine-specific isotopic labelling and dynamic nuclear polarisation (DNP)-enhanced Magic Angle Spinning (MAS) NMR. Homonuclear correlation experiments revealed that the non-A-form helical conformation of miR-34a increases when incorporated into hAgo2 and subsequently bound to SIRT1 mRNA compared to the free miR-34a or the free mRNA:miR duplex. The C8-C1' correlation provided a nucleotide-specific distribution of C2'- and C3'-endo sugar puckering, revealing the capture of diverse dynamic conformations upon freezing. Predominantly C3'-endo puckering was observed for the seed region, while C2'-endo conformation was found in the central region, with a mixture of both conformations elsewhere. These observations provide insights into the molecular dynamics underlying miR-mediated mRNA regulation and demonstrate that experiments conducted under cryogenic conditions, such as at 90 K, can capture and reveal frozen dynamic states, using methods like DNP-enhanced MAS NMR or Cryo-Electron Microscopy.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae744\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae744","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elucidating microRNA-34a organisation within human Argonaute-2 by dynamic nuclear polarisation-enhanced magic angle spinning NMR.
Understanding mRNA regulation by microRNA (miR) relies on the structural understanding of the RNA-induced silencing complex (RISC). Here, we elucidate the structural organisation of miR-34a, which is de-regulated in various cancers, in human Argonaute-2 (hAgo2), the effector protein in RISC. This analysis employs guanosine-specific isotopic labelling and dynamic nuclear polarisation (DNP)-enhanced Magic Angle Spinning (MAS) NMR. Homonuclear correlation experiments revealed that the non-A-form helical conformation of miR-34a increases when incorporated into hAgo2 and subsequently bound to SIRT1 mRNA compared to the free miR-34a or the free mRNA:miR duplex. The C8-C1' correlation provided a nucleotide-specific distribution of C2'- and C3'-endo sugar puckering, revealing the capture of diverse dynamic conformations upon freezing. Predominantly C3'-endo puckering was observed for the seed region, while C2'-endo conformation was found in the central region, with a mixture of both conformations elsewhere. These observations provide insights into the molecular dynamics underlying miR-mediated mRNA regulation and demonstrate that experiments conducted under cryogenic conditions, such as at 90 K, can capture and reveal frozen dynamic states, using methods like DNP-enhanced MAS NMR or Cryo-Electron Microscopy.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.