W Wolff, M Dogan, H Luna, L H Coutinho, D Mootheril, Woonyong Baek, T Pfeifer, A Dorn
{"title":"CF4 的绝对电子碰撞电离截面:三维反冲离子成像与相对流技术相结合。","authors":"W Wolff, M Dogan, H Luna, L H Coutinho, D Mootheril, Woonyong Baek, T Pfeifer, A Dorn","doi":"10.1063/5.0219527","DOIUrl":null,"url":null,"abstract":"<p><p>Here we present measurements of dissociative and non-dissociative cross-sections for the electron impact of the CF4 molecule. The present experiments are based on a Recoil Ion Momentum Spectrometer (RIMS), a standard gas mixing setup for CF4, and a reference gas. The measurements were carried out at several electron energies up to 1 keV, covering the energy range of previous experiments. We apply the relative flow technique (RFT) to convert the relative cross-sections measured by the RIMS into absolute values. Using the combination of RIMS and RFT, ion collection and calibration errors were minimized. The results were compared with theoretical and experimental studies available in the literature. Previous electron impact experiments present relative cross-sections or use correction terms for the absolute cross-sections due to losses of energetic ions. We elucidate the differences between the new measurement method and the existing ones in the literature and explain why the present method can be considered reliable. Furthermore, we show how reducing correction terms affects the results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absolute electron impact ionization cross-sections for CF4: Three dimensional recoil-ion imaging combined with the relative flow technique.\",\"authors\":\"W Wolff, M Dogan, H Luna, L H Coutinho, D Mootheril, Woonyong Baek, T Pfeifer, A Dorn\",\"doi\":\"10.1063/5.0219527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here we present measurements of dissociative and non-dissociative cross-sections for the electron impact of the CF4 molecule. The present experiments are based on a Recoil Ion Momentum Spectrometer (RIMS), a standard gas mixing setup for CF4, and a reference gas. The measurements were carried out at several electron energies up to 1 keV, covering the energy range of previous experiments. We apply the relative flow technique (RFT) to convert the relative cross-sections measured by the RIMS into absolute values. Using the combination of RIMS and RFT, ion collection and calibration errors were minimized. The results were compared with theoretical and experimental studies available in the literature. Previous electron impact experiments present relative cross-sections or use correction terms for the absolute cross-sections due to losses of energetic ions. We elucidate the differences between the new measurement method and the existing ones in the literature and explain why the present method can be considered reliable. Furthermore, we show how reducing correction terms affects the results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219527\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219527","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Absolute electron impact ionization cross-sections for CF4: Three dimensional recoil-ion imaging combined with the relative flow technique.
Here we present measurements of dissociative and non-dissociative cross-sections for the electron impact of the CF4 molecule. The present experiments are based on a Recoil Ion Momentum Spectrometer (RIMS), a standard gas mixing setup for CF4, and a reference gas. The measurements were carried out at several electron energies up to 1 keV, covering the energy range of previous experiments. We apply the relative flow technique (RFT) to convert the relative cross-sections measured by the RIMS into absolute values. Using the combination of RIMS and RFT, ion collection and calibration errors were minimized. The results were compared with theoretical and experimental studies available in the literature. Previous electron impact experiments present relative cross-sections or use correction terms for the absolute cross-sections due to losses of energetic ions. We elucidate the differences between the new measurement method and the existing ones in the literature and explain why the present method can be considered reliable. Furthermore, we show how reducing correction terms affects the results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.