神经管有机体:研究发育时间的新系统

IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Stem Cell Reviews and Reports Pub Date : 2024-11-01 Epub Date: 2024-09-04 DOI:10.1007/s12015-024-10785-5
Alexa Rabeling, Amy van der Hoven, Nathalie Andersen, Mubeen Goolam
{"title":"神经管有机体:研究发育时间的新系统","authors":"Alexa Rabeling, Amy van der Hoven, Nathalie Andersen, Mubeen Goolam","doi":"10.1007/s12015-024-10785-5","DOIUrl":null,"url":null,"abstract":"<p><p>The neural tube (NT) is a transient structure formed during embryogenesis which develops into the brain and spinal cord. While mouse models have been commonly used in place of human embryos to study NT development, species-specific differences limit their applicability. One major difference is developmental timing, with NT formation from the neural plate in 16 days in humans compared to 4 days in mice, as well as differences in the time taken to form neuronal subtypes and complete neurogenesis. Neural tube organoids (NTOs) represent a new way to study NT development in vitro. While mouse and human NTOs have been shown to recapitulate the major developmental events of NT formation; it is unknown whether species-specific developmental timing, also termed allochrony, is also recapitulated. This review summarises current research using both mouse and human NTOs and compares developmental timing events in order to assess if allochrony is maintained in organoids.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"2045-2061"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554929/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural Tube Organoids: A Novel System to Study Developmental Timing.\",\"authors\":\"Alexa Rabeling, Amy van der Hoven, Nathalie Andersen, Mubeen Goolam\",\"doi\":\"10.1007/s12015-024-10785-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neural tube (NT) is a transient structure formed during embryogenesis which develops into the brain and spinal cord. While mouse models have been commonly used in place of human embryos to study NT development, species-specific differences limit their applicability. One major difference is developmental timing, with NT formation from the neural plate in 16 days in humans compared to 4 days in mice, as well as differences in the time taken to form neuronal subtypes and complete neurogenesis. Neural tube organoids (NTOs) represent a new way to study NT development in vitro. While mouse and human NTOs have been shown to recapitulate the major developmental events of NT formation; it is unknown whether species-specific developmental timing, also termed allochrony, is also recapitulated. This review summarises current research using both mouse and human NTOs and compares developmental timing events in order to assess if allochrony is maintained in organoids.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"2045-2061\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10785-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10785-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

神经管(NT)是胚胎发育过程中形成的瞬时结构,可发育成大脑和脊髓。虽然小鼠模型常用来代替人类胚胎研究神经管的发育,但物种间的差异限制了其适用性。其中一个主要的差异是发育时间,人的神经管从神经板形成需要16天,而小鼠只需4天,而且形成神经元亚型和完成神经发生所需的时间也不同。神经管器官组织(NTOs)是研究NT体外发育的一种新方法。虽然小鼠和人类的 NTOs 已被证明能再现神经管形成的主要发育过程,但其是否能再现物种特异性的发育时间(也称为异时性)还不得而知。本综述总结了目前使用小鼠和人类 NTO 进行的研究,并比较了发育时间事件,以评估器官组织中是否保持了异时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Tube Organoids: A Novel System to Study Developmental Timing.

The neural tube (NT) is a transient structure formed during embryogenesis which develops into the brain and spinal cord. While mouse models have been commonly used in place of human embryos to study NT development, species-specific differences limit their applicability. One major difference is developmental timing, with NT formation from the neural plate in 16 days in humans compared to 4 days in mice, as well as differences in the time taken to form neuronal subtypes and complete neurogenesis. Neural tube organoids (NTOs) represent a new way to study NT development in vitro. While mouse and human NTOs have been shown to recapitulate the major developmental events of NT formation; it is unknown whether species-specific developmental timing, also termed allochrony, is also recapitulated. This review summarises current research using both mouse and human NTOs and compares developmental timing events in order to assess if allochrony is maintained in organoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
期刊最新文献
HucMSCs-derived Exosomes Promote Lung Development in Premature Birth via Wnt5a/ROCK1 Axis. LNK/SH2B3 Loss Exacerbates the Development of Myeloproliferative Neoplasms in CBL-deficient Mice. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Automated Manufacturing Processes and Platforms for Large-scale Production of Clinical-grade Mesenchymal Stem/ Stromal Cells. BMSC Derived Exosomes Attenuate Apoptosis of Temporomandibular Joint Disc Chondrocytes in TMJOA via PI3K/AKT Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1